We have previously shown that during top-down attentional modulation (stimulus expectation) correlations of the beta signals across the primary visual cortex were uniform, while during bottom-up attentional processing (visual stimulation) their values were heterogeneous. These different patterns of attentional beta modulation may be caused by feed-forward lateral inhibitory interactions in the visual cortex, activated solely during stimulus processing. To test this hypothesis, we developed a large-scale computational model of the cortical network. We first identified the parameter range needed to support beta rhythm generation, and next, simulated the different activity states corresponding to experimental paradigms. The model matched our experimental data in terms of spatial organization of beta correlations during different attentional states and provided a computational confirmation of the hypothesis that the paradigm-specific beta activation spatial maps depend on the lateral inhibitory mechanism. The model also generated testable predictions that cross-correlation values depend on the distance between the activated columns and on their spatial position with respect to the location of the sensory inputs from the thalamus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1142/S0129065718500478 | DOI Listing |
PLoS Biol
January 2025
Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
Goal-directed behavior requires the effective suppression of distractions to focus on the task at hand. Although experimental evidence suggests that brain areas in the prefrontal and parietal lobe contribute to the selection of task-relevant and the suppression of task-irrelevant stimuli, how conspicuous distractors are encoded and effectively ignored remains poorly understood. We recorded neuronal responses from 2 regions in the prefrontal and parietal cortex of macaques, the frontal eye fields (FEFs) and the lateral intraparietal (LIP) area, during a visual search task, in the presence and absence of a salient distractor.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
Previous studies have shown that high-gamma (HG) activity in the primary visual cortex (V1) has distinct higher (broadband) and lower (narrowband) components with different functions and origins. However, it is unclear whether a similar segregation exists in the primary somatosensory cortex (S1), and the origins and roles of HG activity in S1 remain unknown. Here, we investigate the functional roles and origins of HG activity in S1 during tactile stimulation in humans and a rat model.
View Article and Find Full Text PDFHow the prefrontal hemispheres coordinate to adapt to spatial working memory (WM) demands remains an open question. Recently, two models have been proposed: A specialized model, where each hemisphere governs contralateral behavior, and a redundant model, where both hemispheres equally guide behavior in the full visual space. To explore these alternatives, we analyzed simultaneous bilateral prefrontal cortex recordings from three macaque monkeys performing a visuo-spatial WM task.
View Article and Find Full Text PDFUnderstanding the balance between plastic and persistent traits in the dyslexic brain is critical for developing effective interventions. This longitudinal intervention study examines the Visual Word Form Area (VWFA) in dyslexic and typical readers, exploring how this key component of the brain's reading circuitry changes with learning. We found that dyslexic readers show significant differences in VWFA presence, size, and tuning properties compared to typical readers.
View Article and Find Full Text PDFReading, face recognition, and navigation are supported by visuospatial computations in category-selective regions across ventral, lateral, and dorsal visual streams. However, the nature of visuospatial computations across streams and their development in adolescence remain unknown. Using fMRI and population receptive field (pRF) modeling in adolescents and adults, we estimate pRFs in high-level visual cortex and determine their development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!