A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biologically Inspired, Cell-Selective Release of Aptamer-Trapped Growth Factors by Traction Forces. | LitMetric

Biomaterial scaffolds that are designed to incorporate dynamic, spatiotemporal information have the potential to interface with cells and tissues to direct behavior. Here, a bioinspired, programmable nanotechnology-based platform is described that harnesses cellular traction forces to activate growth factors, eliminating the need for exogenous triggers (e.g., light), spatially diffuse triggers (e.g., enzymes, pH changes), or passive activation (e.g., hydrolysis). Flexible aptamer technology is used to create modular, synthetic mimics of the Large Latent Complex that restrains transforming growth factor-β1 (TGF-β1). This flexible nanotechnology-based approach is shown here to work with both platelet-derived growth factor-BB (PDGF-BB) and vascular endothelial growth factor (VEGF-165), integrate with glass coverslips, polyacrylamide gels, and collagen scaffolds, enable activation by various cells (e.g., primary human dermal fibroblasts, HMEC-1 endothelial cells), and unlock fundamentally new capabilities such as selective activation of growth factors by differing cell types (e.g., activation by smooth muscle cells but not fibroblasts) within clinically relevant collagen sponges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375388PMC
http://dx.doi.org/10.1002/adma.201806380DOI Listing

Publication Analysis

Top Keywords

growth factors
12
traction forces
8
growth
6
biologically inspired
4
inspired cell-selective
4
cell-selective release
4
release aptamer-trapped
4
aptamer-trapped growth
4
factors traction
4
forces biomaterial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!