The diversity of cell shapes across the bacterial kingdom reflects evolutionary pressures that have produced physiologically important morphologies. While efforts have been made to understand the regulation of some prototypical cell morphologies such as that of rod-shaped Escherichia coli, little is known about most cell shapes. For Caulobacter crescentus, polar stalk synthesis is tied to its dimorphic life cycle, and stalk elongation is regulated by phosphate availability. Based on the previous observation that C. crescentus stalks are lysozyme-resistant, we compared the composition of the peptidoglycan cell wall of stalks and cell bodies and identified key differences in peptidoglycan crosslinking. Cell body peptidoglycan contained primarily DD-crosslinks between meso-diaminopimelic acid and D-alanine residues, whereas stalk peptidoglycan had more LD-transpeptidation (meso-diaminopimelic acid-meso-diaminopimelic acid), mediated by LdtD. We determined that ldtD is dispensable for stalk elongation; rather, stalk LD-transpeptidation reflects an aging process associated with low peptidoglycan turnover in the stalk. We also found that lysozyme resistance is a structural consequence of LD-crosslinking. Despite no obvious selection pressure for LD-crosslinking or lysozyme resistance in C. crescentus, the correlation between these two properties was maintained in other organisms, suggesting that DAP-DAP crosslinking may be a general mechanism for regulating bacterial sensitivity to lysozyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mmi.14199 | DOI Listing |
Immunohorizons
January 2025
Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada.
The global dissemination of SARS-CoV-2 led to a worldwide pandemic in March 2020. Even after the official downgrading of the COVID-19 pandemic, infection with SARS-CoV-2 variants continues. The rapid development and deployment of SARS-CoV-2 vaccines helped to mitigate the pandemic to a great extent.
View Article and Find Full Text PDFLipopolysaccharide (LPS) is essential in most Gram-negative bacteria, but mutants of several species have been isolated that can survive in its absence. viability in the absence of LPS is partially dependent on the anionic sphingolipid ceramide diphosphoglycerate (CPG2). Genetic analyses showed that , which encodes a nucleotidyltransferase, is required for CPG2 production.
View Article and Find Full Text PDFComput Biol Med
January 2025
Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Street 15, Port Said, 42521, Egypt. Electronic address:
Studying and analysing the various phases and key proteins of cell cycles is essential for the understanding of cell development and differentiation. To this end, mechanistic models play an important role towards a system level understanding of the interactions between cell cycle components. Many quantitative models of cell cycles have been previously constructed using either stochastic or deterministic approaches.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01002, USA.
Every protein progresses through a natural lifecycle from birth to maturation to death; this process is coordinated by the protein homeostasis system. Environmental or physiological conditions trigger pathways that maintain the homeostasis of the proteome. An open question is how these pathways are modulated to respond to the many stresses that an organism encounters during its lifetime.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Biology Department, San Diego State University, San Diego, California, USA.
Unlabelled: Many species of proteobacterial methane-consuming bacteria (methanotrophs) form a hauberk-like envelope represented by a surface (S-) layer protein (SLP) matrix. While several proteins were predicted to be associated with the cell surface, the composition and function of the hauberk matrix remained elusive. Here, we report the identification of the genes encoding the hauberk-forming proteins in two gamma-proteobacterial (Type I) methanotrophs, 5GB1 (EQU24_15540) and 20Z (MEALZ_0971 and MEALZ_0972).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!