The presence of reproductive endocrine-disrupting compounds (REDCs) in the environment poses a potential threat to fish and wildlife, because exposures are capable of altering sexual development, reproductive success, and behavior. Fish-based screening assays are often utilized to screen for the presence of REDCs in surface waters and to assess single chemicals for potential endocrine-disrupting activity. In an effort to improve such screening assays, the goal of the present study was to determine whether the gonadosomatic index (GSI) of female fathead minnows (Pimephales promelas), as assessed via external characteristics, influences their response to REDC exposure. Specifically, we sought to determine whether low-GSI females differed from high-GSI females in their responses to the model anti-estrogen fadrozole and the model androgen 17β-trenbolone, and whether there was a preferable classification in the context of REDC screening. Low-GSI females were more sensitive to fadrozole at the lower concentration of fadrozole (5 µg/L) and to the higher concentration of trenbolone (50 ng/L), whereas high-GSI females were more sensitive at the lower concentration of trenbolone (5 ng/L). The differential response of low- and high-GSI females to REDCs indicates that GSI influences exposure outcome, and should subsequently be taken into consideration in the implementation of screening assays, as failure to utilize fish of the appropriate reproductive status may skew the test results. Environ Toxicol Chem 2019;38:603-615. © 2019 SETAC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.4353DOI Listing

Publication Analysis

Top Keywords

screening assays
16
high-gsi females
12
fish-based screening
8
low-gsi females
8
females sensitive
8
lower concentration
8
concentration trenbolone
8
screening
5
females
5
gonadosomatic confounding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!