Multinomial Logistic Regression (MLR) has been advocated for developing clinical prediction models that distinguish between three or more unordered outcomes. We present a full-factorial simulation study to examine the predictive performance of MLR models in relation to the relative size of outcome categories, number of predictors and the number of events per variable. It is shown that MLR estimated by Maximum Likelihood yields overfitted prediction models in small to medium sized data. In most cases, the calibration and overall predictive performance of the multinomial prediction model is improved by using penalized MLR. Our simulation study also highlights the importance of events per variable in the multinomial context as well as the total sample size. As expected, our study demonstrates the need for optimism correction of the predictive performance measures when developing the multinomial logistic prediction model. We recommend the use of penalized MLR when prediction models are developed in small data sets or in medium sized data sets with a small total sample size (ie, when the sizes of the outcome categories are balanced). Finally, we present a case study in which we illustrate the development and validation of penalized and unpenalized multinomial prediction models for predicting malignancy of ovarian cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590172PMC
http://dx.doi.org/10.1002/sim.8063DOI Listing

Publication Analysis

Top Keywords

prediction models
20
predictive performance
16
sample size
12
multinomial logistic
12
performance multinomial
8
logistic prediction
8
simulation study
8
outcome categories
8
events variable
8
medium sized
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!