Nucleosides and their analogues play a crucial role in the treatment of several diseases including cancers and viral infections. Their therapeutic efficiency depends on their capacity to be converted to the active nucleoside triphosphates form through successive phosphorylation steps catalyzed by nucleoside/nucleotide kinases. It is thus mandatory to develop an easy, rapid, reliable and sensitive enzyme activity tests. In this study, we monitored the three-step phosphorylation of thymidine to thymidine triphosphate respectively by (1) human thymidine kinase 1 (hTK1), (2) human thymidylate kinase (hTMPK) and (3) human nucleoside diphosphate kinase (hNDPK). Free and immobilized kinase activities were characterized by using the Michaelis-Menten kinetic model. Flow Injection Analysis (FIA) with High-Resolution Mass Spectrometry (HRMS) was used as well as capillary electrophoresis (CE) with UV detection. The three-step cascade phosphorylation of thymidine was also monitored. FIA-HRMS allows a sensitive and rapid evaluation of the phosphorylation process. This study proposes simple, rapid, efficient and sensitive methods for enzyme kinetic studies and successive phosphorylation monitoring with immobilized enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2018.10.032DOI Listing

Publication Analysis

Top Keywords

free immobilized
8
nucleoside/nucleotide kinases
8
flow injection
8
injection analysis
8
high-resolution mass
8
mass spectrometry
8
successive phosphorylation
8
phosphorylation thymidine
8
thymidine
5
phosphorylation
5

Similar Publications

Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.

View Article and Find Full Text PDF

Protein immobilization technology is important in medical and industrial applications. We previously reported all-in-one in vitro selection, wherein a collagen-binding vascular endothelial growth factor (CB-VEGF) was identified from a fusion library of random and VEGF sequences. However, its interaction chemistry is mainly limited to the interaction established by the 20 canonical amino acids.

View Article and Find Full Text PDF

A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules.

View Article and Find Full Text PDF

Comparative Study of Polymer Globules and Liquid Droplets in Poor Solvents: Effects of Cosolvents and Solvent Quality.

J Phys Chem B

January 2025

Department of Chemical Engineering, IIT Gandhinagar, Gandhinagar, Gujarat 382055, India.

We compare the structures of polymer globules, composed of flexible polymer chains, with liquid droplets made of nonbonded monomers of the same polymer in poor solvents. This comparison is performed in three different poor solvents, with and without the addition of cosolvents. Molecular dynamics simulations are used to analyze the properties of the polymer globules, while semigrand canonical Monte Carlo simulations are used to form metastable liquid droplets of nonbonded monomers through homogeneous nucleation in the same solvents.

View Article and Find Full Text PDF

Intramolecular distance-regulated G4 DNA enzymatic activity-based chromophotometric system for visual monitoring of diquat.

Anal Chim Acta

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:

Background: As global food production continues to surge, the widespread use of herbicides has also increased concurrently, posing challenges like health risks and environmental pollution. Traditional detection methods for pesticide residues, such as diquat (DQ), were hampered by limitations like high expenses, lengthy detection times and complex operations, restricting their practical application in rapid clinical diagnosis.

Results: In light of the pressing necessity for the identification of minute pesticide residues and the intrinsic constraints of small molecule analysis, a novel chromophotometric biosensor targeting small molecules was developed based on bi-epitopes on single antibody to immobilize two DQ-PAL, inhibiting the hybridization of DQ-PAL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!