Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biomaterials can play a dual role in bone regeneration: they enable local sustained delivery of growth factors, such as bone morphogenetic protein-2 (BMP-2), while they provide structural support as scaffold. By better imitating the properties of native bone tissue, scaffolds may be both osteoconductive and osteoinductive. The latter can be achieved by modifying the electrical charge of the surface. The present work uses tunable oligo[(polyethylene glycol) fumarate] hydrogel and demonstrates that negative charge enhances BMP-2-induced bone formation compared with neutral or positive charge. Altogether, this indicates that tissue-specific surface charge modifications of biomaterials hold great promise in the field of tissue regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648221 | PMC |
http://dx.doi.org/10.1089/ten.TEA.2018.0140 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!