Ligand-Dependent Colloidal Stability Controls the Growth of Aluminum Nanocrystals.

J Am Chem Soc

Division of Hematology, Department of Internal Medicine , The University of Texas McGovern Medical School, 6431 Fannin Street , Houston , Texas 77030 , United States.

Published: January 2019

The precise size- and shape-controlled synthesis of monodisperse Al nanocrystals remains an open challenge, limiting their utility for numerous applications that would take advantage of their size and shape-dependent optical properties. Here we pursue a molecular-level understanding of the formation of Al nanocrystals by titanium(IV) isopropoxide-catalyzed decomposition of AlH in Lewis base solvents. As determined by electron paramagnetic resonance spectroscopy of intermediates, the reaction begins with the formation of Ti-AlH complexes. Proton nuclear magnetic resonance spectroscopy indicates isopropoxy ligands are removed from Ti by Al, producing aluminum(III) isopropoxide and low-valent Ti catalysts. These Ti species catalyze elimination of H from AlH inducing the polymerization of AlH into colloidally unstable low-valent aluminum hydride clusters. These clusters coalesce and grow while expelling H to form colloidally stable Al nanocrystals. The colloidal stability of the Al nanocrystals and their size is determined by the molecular structure and density of coordinating atoms in the reaction, which is controlled by choice of solvent composition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b12255DOI Listing

Publication Analysis

Top Keywords

colloidal stability
8
resonance spectroscopy
8
nanocrystals
5
ligand-dependent colloidal
4
stability controls
4
controls growth
4
growth aluminum
4
aluminum nanocrystals
4
nanocrystals precise
4
precise size-
4

Similar Publications

Enhancing battery longevity by regulating the solvation chemistry of organic iodide.

Angew Chem Int Ed Engl

December 2024

Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

For rechargeable zinc-iodine batteries, the low electrical conductivity of iodine and the easy dissolution of polyiodide in the electrolyte need to be carefully managed to ensure efficient operation. Herein, we introduce an organic iodized salt, formamidinium iodide (CHNI), to modulate the solvation structure of iodide ion, aimed to improve the reaction kinetics of iodine for reversible redox conversion. The participation of formamidinium ion (FA) into solvation structure leads to the formation of the favorable FAIZn(HO) complex, facilitating easier desolvation for redox conversion with iodine.

View Article and Find Full Text PDF

A Wenzel Interfaces Design for Homogeneous Solute Distribution Obtains Efficient and Stable Perovskite Solar Cells.

Adv Mater

January 2025

College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.

View Article and Find Full Text PDF

: The aim of this study is to assess whether changes in Pulse Pressure Variation (PPV) and Stroke Volume Variation (SVV) following a VtC can predict the response to fluid administration in patients undergoing surgery under general anesthesia with protective mechanical ventilation. : A total of 40 patients undergoing general surgery or vascular surgery without clamping the aorta were enrolled. Protective mechanical ventilation was applied, and the radial artery was catheterized in all patients.

View Article and Find Full Text PDF

Design and Characterization of Novel Polymeric Hydrogels with Protein Carriers for Biomedical Use.

Int J Mol Sci

December 2024

Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland.

Hydrogels are three-dimensional polymeric matrices capable of absorbing significant amounts of water or biological fluids, making them promising candidates for biomedical applications such as drug delivery and wound healing. In this study, novel hydrogels were synthesized using a photopolymerization method and modified with cisplatin-loaded protein carriers, as well as natural extracts of nettle () and chamomile ( L.).

View Article and Find Full Text PDF

Multifunctional Organic Molecule for Defect Passivation of Perovskite for High-Performance Indoor Solar Cells.

Materials (Basel)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.

Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!