A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrated block copolymer prodrug nanoparticles for combination of tumor oxidative stress amplification and ROS-responsive drug release. | LitMetric

Integrated block copolymer prodrug nanoparticles for combination of tumor oxidative stress amplification and ROS-responsive drug release.

Biomaterials

CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China. Electronic address:

Published: March 2019

In tumor tissues, reactive oxygen species (ROS) level is significantly higher than that in normal tissues, which has been frequently explored as the specific stimulus to trigger drug release. However, the low intrinsic ROS concentration and heterogeneous distribution in tumor tissues hinder the applications as the stimulus for drug delivery. Herein, we developed integrated nanoparticles to remold tumor microenvironment via specific amplification of the tumor oxidative stress and simultaneously realize ROS-responsive drug release. The amphiphilic block copolymer prodrugs composed of poly(ethylene glycol) and polymerized methacrylate monomer containing thioketal-linked camptothecin (CPT) were synthesized and self-assembled to form core-shell micelles for encapsulation of β-lapachone (Lapa@NPs). After tumor accumulation and internalization into tumor cells post systemic administration of Lapa@NPs, Lapa can selectively induce remarkable ROS level increase via the catalysis of NAD(P)H: quinone oxidoreductase-1 (NQO1) enzyme overexpressed in cancer cells. Subsequently, enhanced ROS concentration would trigger the cleavage of thioketal linkers to release drug. The released CPT together with high ROS level achieved a synergistic therapy to suppress tumor growth. Moreover, Lapa@NPs exhibited superior biosafety due to the tumor-specific activation of the cascade reaction. Accordingly, Lapa@NPs represent a novel polymer prodrug design and drug release strategy via tumor-specific oxidative stress amplification and subsequent ROS-responsive drug release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2018.12.032DOI Listing

Publication Analysis

Top Keywords

drug release
20
oxidative stress
12
ros-responsive drug
12
ros level
12
block copolymer
8
tumor
8
tumor oxidative
8
stress amplification
8
tumor tissues
8
ros concentration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!