Background: BRAF inhibitor (BRAF-I) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms behind BRAF-I responsiveness and acquired resistance is therefore an important issue. Here we assessed the role of urokinase type plasminogen activator receptor (uPAR) as a potentially valuable biomarker in the acquisition of BRAF-I resistance in V600E mutant melanoma cells.
Methods: We examined uPAR and EGFR levels by real time PCR and western blot analysis. uPAR loss of function was realized by knocking down uPAR by RNAi or using M25, a peptide that uncouples uPAR-integrin interaction. We investigated uPAR-β1integrin-EGFR association by co-immunoprecipitation and confocal immuno-fluorescence analysis. Acquired resistance to BRAF-I was generated by chronic exposure of cells to vemurafenib.
Findings: We proved that uPAR knockdown in combination with vemurafenib inhibits melanoma cell proliferation to greater extent than either treatment alone causing a decrease in AKT and ERK1/2 phosphorylation. Conversely, we demonstrated that uPAR enforced over-expression results in reduced sensitivity to BRAF inhibition. Moreover, by targeting uPAR and EGFR interaction with an integrin antagonist peptide we restored vemurafenib responsiveness in melanoma resistant cells. Furthermore, we found significant detectable uPAR and EGFR levels in tumor biopsies of 4 relapsed patients.
Interpretation: We disclosed an unpredicted mechanism of reduced sensitiveness to BRAF inhibition, driven by elevated levels of uPAR and identified a potential therapeutic strategy to overcome acquired resistance.
Funds: Associazione Italiana Ricerca sul Cancro (AIRC); Ente Cassa di Risparmio di Firenze.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355443 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2018.12.024 | DOI Listing |
Background: Due to its increasing prevalence and suboptimal treatment, non-tuberculous mycobacterial (NTM) infection is an emerging problem in patients with cystic fibrosis (CF). Detailed description of regional NTM prevalence and distribution, and identification of predictors of NTM acquisition in CF are essential to optimise treatment and surveillance guidelines.
Methods: A retrospective, multi-center analysis was conducted between the years 2020 and 2022 on data from 232 adult patients registered in the Hungarian CF Registry in 2022.
Curr Med Chem
January 2025
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
Histone deacetylases (HDACs) play a crucial role in the regulation of cancer progression and have emerged as key targets for antitumor therapy. Histone Deacetylase Inhibitors (HDACis) effectively suppress tumor cell proliferation, induce apoptosis, and cause cell cycle arrest, demonstrating broad-spectrum antitumor activity. This article primarily focuses on enhancing the selectivity of HDACis through structural modification using natural compounds.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
January 2025
Department of Infectious Disease,Children's Hospital of Fudan University, National Children's Medical Center (Shanghai), Shanghai 200032, China.
(MP) is a common cause of community-acquired pneumonia in children in China, and it is often prevalent in the autumn and winter seasons. In the autumn and winter of 2023, a large-scale epidemic outbreak of MP pneumonia occurred nationwide in the pediatric population, which brought harm to child health, caused a heavy disease burden, imposed a challenge to the pediatric medical service system, and aroused great attention from medical administration and public health fields. The widespread prevalence of macrolide-resistant MP (MRMP) in China has become a prominent problem in pediatric clinical practice.
View Article and Find Full Text PDFChin Clin Oncol
December 2024
Colorectal Cancer Center, Sichuan University West China Hospital, Chengdu, China; Department of Medical Oncology, Cancer Center, Sichuan University West China Hospital, Chengdu, China.
Background: Epstein-Barr virus-associated gastric cancer (EBVaGC) is characterized by higher lymphocytic infiltration, which predicts sensitivity to immunotherapy. However, there are few studies investigating the mechanisms of acquired resistance to programmed cell death protein 1 (PD-1) blockade and its subsequent treatment strategies for EBVaGC.
Case Description: We describe the case of a patient with EBVaGC who was initially treated with first-line chemotherapy plus Sintilimab, a fully humanized anti-PD-1 monoclonal antibody, resulting in a near-complete response.
J Hematol Oncol
January 2025
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!