Disordered Protein Kinase Regions in Regulation of Kinase Domain Cores.

Trends Biochem Sci

Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0654, USA; Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0654, USA. Electronic address:

Published: April 2019

Since publication of the crystal structure of protein kinase (PK)A three decades ago, a structural portrait of the conserved kinase core has been drawn. The next challenge is to elucidate structures of full-length kinases and to address the intrinsically disordered regions (IDRs) that typically flank the core as well as the small linear motifs (SLiMs) that are embedded within the IDRs. It is increasingly apparent that unstructured regions integrate the kinase catalytic chassis into multienzyme-based regulatory networks. The extracellular signal-regulated kinase-ribosomal S6 PK-phosphoinositide-dependent kinase (ERK-RSK-PDK) complex is an excellent example to demonstrate how IDRs and SLiMs govern communication between four different kinase catalytic cores to mediate activation and how in molecular terms these promote the formation of kinase heterodimers in a context dependent fashion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592696PMC
http://dx.doi.org/10.1016/j.tibs.2018.12.002DOI Listing

Publication Analysis

Top Keywords

kinase
8
protein kinase
8
kinase catalytic
8
disordered protein
4
kinase regions
4
regions regulation
4
regulation kinase
4
kinase domain
4
domain cores
4
cores publication
4

Similar Publications

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

Objective: This study focuses on epidermal growth factor receptor-mutated lung adenocarcinoma, known for frequent brain metastasis. It aimed to compare the clinical outcomes and cost-effectiveness of combining Gamma Knife radiosurgery (GKRS) with tyrosine kinase inhibitors (TKIs) (GKRS+TKI group) versus TKIs alone (TKI group) for the treatment of patients with newly diagnosed brain metastasis in this condition.

Methods: Study characteristics of the two groups were matched using inverse probability of treatment weighting (IPTW).

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) frequently cause immune-related adverse events (irAEs), with thyroid irAEs being the most common endocrine-related irAEs. The incidence of overt thyroid irAEs ranged 8.9-22.

View Article and Find Full Text PDF

Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!