As part of an effort to identify druggable diacylglycerol kinase alpha (DGKα) inhibitors, we used an in-silico approach based on chemical homology with the two commercially available DGKα inhibitors R59022 and R59949. Ritanserin and compound AMB639752 emerged from the screening of 127 compounds, showing an inhibitory activity superior to the two commercial inhibitors, being furthermore specific for the alpha isoform of diacylglycerol kinase. Interestingly, AMB639752 was also devoid of serotoninergic activity. The ability of both ritanserin and AMB639752, by inhibiting DGKα in intact cells, to restore restimulation induced cell death (RICD) in SAP deficient lymphocytes was also tested. Both compounds restored RICD at concentrations lower than the two previously available inhibitors, indicating their potential use for the treatment of X-linked lymphoproliferative disease 1 (XLP-1), a rare genetic disorder in which DGKα activity is deregulated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599760 | PMC |
http://dx.doi.org/10.1016/j.ejmech.2018.12.061 | DOI Listing |
Sci Rep
January 2025
Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
Sci Adv
January 2025
Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany.
The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals.
View Article and Find Full Text PDFJ Am Heart Assoc
December 2024
Department of Cardiology, Pulmonology, and Nephrology Yamagata University School of Medicine Yamagata Japan.
Background: Doxorubicin-induced cardiotoxicity is still an important medical problem associated with a high mortality rate in cancer survivors. p53 plays a key role in doxorubicin-induced cardiotoxicity. Diacylglycerol kinase ζ (Dgkζ), a 130-kDa enzyme abundant in cardiomyocytes, regulates the p53 protein expression level in neurons.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States.
The activation of IP receptor (IPR) Ca channels generates agonist-mediated Ca signals that are critical for the regulation of a wide range of biological processes. It is therefore surprising that CRISPR induced loss of all three IPR isoforms (TKO) in HEK293 and HeLa cell lines yields cells that can survive, grow and divide, albeit more slowly than wild-type cells. In an effort to understand the adaptive mechanisms involved, we have examined the activity of key Ca dependent transcription factors (NFAT, CREB and AP-1) and signaling pathways using luciferase-reporter assays, phosphoprotein immunoblots and whole genome transcriptomic studies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
Lipids are essential components of eukaryotic membranes, playing crucial roles in membrane structure, energy storage, and signaling. They are predominantly synthesized in the endoplasmic reticulum (ER) and subsequently transported to other organelles. Diacylglycerol kinases (DGKs) are a conserved enzyme family that phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), both of which are key intermediates in lipid metabolism and second messengers involved in numerous cellular processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!