Cadmium (Cd) is a highly toxic heavy metal for both animals and plants. Rice consumption is a major source of Cd intake for human. Minimization of Cd accumulation in rice is key to reduce Cd hazard to human. Here we showed alleviating effects of boron (B), silicon (Si) and their mixture on Cd accumulation and toxicity in hydroponically-cultured rice plants. Cd treatment (100 μM) led to Cd accumulation in roots and shoots, as well as significant reduction in plant growth. However, amendment of either B or Si significantly alleviated Cd accumulation and toxicity. Moreover, simultaneous supply of B and Si showed better alleviating effect. However, addition of B and Si alleviated Cd-induced oxidative stress in Cd-treated plants as reflected by reduced MDA, HO and O, as well as increased activities of major antioxidant enzymes. Cd exposure induced the expression of Cd transporter genes of OsHMA2, OsHMA3, OsNramp1 and OsNramp5. In contrast, simultaneous supplement of B and Si in Cd-treated plants compromised the gene expression. Our results show that both B and Si alleviate Cd accumulation and toxicity by improving oxidative stress and suppressing Cd uptake and transport, and the two elements display joint effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2018.12.111 | DOI Listing |
Environ Toxicol
January 2025
Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.
The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:
Aluminium (Al)-induced programmed cell death (PCD) is thought to be a main cause of Al phytotoxicity. However, the underlying mechanism by which Al induces PCD in plants is unclear. In this study, we characterized the function of AhASRK1 (Aluminum Sensitive Receptor-like protein Kinase1), an Al-induced LRR-type receptor-like kinase gene.
View Article and Find Full Text PDFBioorg Chem
January 2025
Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China. Electronic address:
The C-3 and C-5 substituted 20-deoxyingenol monoesters are important active components in Euphorbiaceae plants. Nonetheless, their similar physical properties make them difficult to distinguish. The present study developed fast and efficient rules for identifying the esterification sites of 20-deoxyingenol based on a series of chemical syntheses of monoesters and literature research, utilizing NMR spectroscopy, optical rotation analysis, and chromatographic retention behavior.
View Article and Find Full Text PDFPhytomedicine
January 2025
The Department of General Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, 528400, China. Electronic address:
Background: The incidence of papillary thyroid carcinoma (PTC) is on the rise globally. It is frequently associated with early lymphatic metastasis, and the poor prognosis tends to be poor once metastasis or recurrence occurs, even with current treatment modalities. Kushenol O, a novel extract derived from Sophora flavescens, has shown remarkable anticancer properties.
View Article and Find Full Text PDFBiol Res
January 2025
Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!