Monitoring of odors emitted from stabilized dewatered sludge subjected to aging using proton transfer reaction-mass spectrometry.

Environ Sci Pollut Res Int

Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233, Gdańsk, Poland.

Published: February 2019

One of the potential emission sources of odorous compounds from wastewater treatment plants is sludge processing. The odorous compounds released from dewatered sludge can result in odor nuisance. This study concerns the use of flux hood chamber combined with proton transfer reaction-time of flight-mass spectrometry (PTR-MS) technique for periodical monitoring of odorous compounds emitted from aged, stabilized dewatered sludge samples from 2 different wastewater treatment plants located in Pomeranian Voivodeship, Poland. Based on determined concentration of the chemical compounds and olfactory threshold values, theoretical odor concentrations (known also as "odor activity value" or "odor index") were calculated for 17 selected odorous compounds. As a result, sulfur compounds such as diethyl sulphide, dimethyl sulphide, methanethiol, and ethanethiol were estimated as the most significant chemical compounds responsible for malodorous effect (average results, e.g., methanethiol, 178 ou/m; diethyl sulphide, 184 ou/m). Based on Pearson correlation coefficient, we revealed a correlation between odorous substances emitted from aged, stabilized dewatered sludge cakes. It was revealed that stabilized dewatered sludge still possessed significant amount of odorous compounds and applied measurement technique could be used for monitoring of odor concentration level of selected malodorous compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403207PMC
http://dx.doi.org/10.1007/s11356-018-4041-4DOI Listing

Publication Analysis

Top Keywords

dewatered sludge
20
odorous compounds
20
stabilized dewatered
16
compounds
9
proton transfer
8
wastewater treatment
8
treatment plants
8
emitted aged
8
aged stabilized
8
chemical compounds
8

Similar Publications

Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental to downstream recovery processes. This pilot-scale study addresses this limitation and explores the recovery of SCFAs from primary sludge into a particle-free permeate through a combination of chamber filter-press (material: polyester; mesh size: 100 µm) and cross-flow microfiltration (material: α-AlO; pore size: 0.

View Article and Find Full Text PDF

Nanobubble water (NBW) or temperature-phased anaerobic digestion assisted by microbial electrolysis cell (MEC-TPAD) can promote sludge hydrolysis and methanogenesis. However, the role of the combined application of NBW and MEC-TPAD in terms of anaerobic performance and related microbial properties remains unclear. This study investigated the impact of Air-NBW on hydrolysis and methanogenesis of dewatered sludge MEC-TPAD.

View Article and Find Full Text PDF

Utilization of wall-breaking sludge for improving soil structure in abandoned mine land.

Environ Res

January 2025

College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

Promoting soil structure is considered an essential prerequisite for abandoned mine land restoration. Sewage sludge (SS) has the potential to improve soil structure. However, traditional SS application to improve soil structure requires a lot of SS, potentially exacerbating heavy metal (HM) contamination.

View Article and Find Full Text PDF

Sludge landfilling is widely used in China, accounting for approximately 65% of total sludge disposal, due to its simplicity and cost-effectiveness. However, with increasing land scarcity and stricter environmental regulations, the Chinese government has emphasized reducing sludge landfilling. Despite these efforts, sludge historically disposed of in landfills continues to pose risks, including heavy metal leaching and contamination of groundwater and soil.

View Article and Find Full Text PDF

In agricultural and waste management systems, dairy manure wastewater is often recycled for irrigation. However, a key challenge lies in handling suspended solids (SS) and effectively dewatering sludge. To address this, an innovative polycationic soybean protein-based flocculant (SPI+) was developed and applied to enhance flocculation and sludge dewatering efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!