A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Human umbilical cord blood mesenchymal stem cells expansion via human fibroblast-derived matrix and their potentials toward regenerative application. | LitMetric

Large expansion of human mesenchymal stem cells (MSCs) is of great interest for clinical applications. In this study, we examine the feasibility of human fibroblast-derived extracellular matrix (hFDM) as an alternative cell expansion setting. hFDM is obtained from decellularized extracellular matrix (ECM) derived from in vitro cultured human lung fibroblasts. Our study directly compares conventional platforms (tissue culture plastic (TCP), fibronectin (FN)-coated TCP) with hFDM using umbilical cord blood-derived MSCs (UCB-MSCs). Early cell morphology shows a rather rounded shape on TCP but highly elongated morphology on hFDM. Cell proliferation demonstrates that MSCs on hFDM were significantly better compared to the others in both 10 and 2% serum condition. Cell migration assay suggests that cell motility was improved and a cell migration marker CXCR4 was notably up-regulated on hFDM. MSCs differentiation into osteogenic lineage on hFDM was also very effective as examined via gene expression, von Kossa staining and alkaline phosphatase activity. In addition, as the MSCs were expanded on each substrate, transferred to 3D polymer mesh scaffolds and then cultivated for a while, the data found better cell proliferation and more CXCR4 expression with MSCs pre-conditioned on hFDM. Moreover, higher gene expression of stemness and engraftment-related markers was noticed with the hFDM group. Furthermore when UCB-MSCs expanded on TCP or hFDM were injected into emphysema (a lung disease) animal model, the results indicate that MSCs pre-conditioned on hFDM (with 2% serum) retain more advanced therapeutic efficacy on the improvement of emphysema than those on TCP. Current works demonstrate that compared to the conventional platforms, hFDM can be a promising source of cell expansion with a naturally derived biomimetic ECM microenvironment and may find some practical applications in regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-018-2971-2DOI Listing

Publication Analysis

Top Keywords

hfdm
12
umbilical cord
8
mesenchymal stem
8
stem cells
8
expansion human
8
human fibroblast-derived
8
extracellular matrix
8
cell
8
cell expansion
8
conventional platforms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!