Background: There is a consensus that after a flexor tendon repair an aggressive rehabilitation protocol with early active motion can improve functional outcome, provided that the combination of material and suturing technique can meet the higher biomechanic demands. Bearing this in mind we evaluated a polytetrafluoroethylene (PTFE) suture (SERAMON, Serag-Wiessner) as a possible material for flexor tendon repair.
Materials And Methods: 40 flexor tendons were harvested from fresh cadaveric upper extremities. 3-0 and 5-0 strands were used both in the polypropylene (PPL) as well as in the PTFE group. In the first phase of the study, we evaluated knotting properties and mechanical characteristics of the suture materials themselves. In the second phase, a 2-strand Kirchmayr-Kessler suture technique was applied for a core suture of a flexor tendon (n = 16). In the third phase, we performed a tendon repair including an epitendinous running suture with 5-0 PPL or 5-0 PTFE material (n = 22). One way ANOVA tests were performed.
Results: The linear loading strength of single strand knotted PPL 3-0 was 19.87 ± 0.59 N. The linear loading strength of knotted PTFE 3-0 was 32.47 ± 1.67 N. For PPL 3-0 maximum linear strength was achieved with five knots, for PTFE 3-0 with eight knots. When a Kirchmayr-Kessler core-only repair was performed, then in the PPL group the loading strength of the repaired tendon was 30.74 ± 9.77 N. In the PTFE group the loading strength was 23.74 ± 5.6 N (p = 0.10). However, all repairs in the PTFE group failed due to cheese wiring. When a Kirchmayr-Kessler core and epitendinous repair technique was used, then in the PPL group the loading strength of the repaired tendon was 49.90 ± 16.05 N. In the PTFE group the loading strength was 73.41 ± 19.81 N (p = 0.006).
Conclusion: PTFE demonstrates superior strength properties in comparison to PPL for flexor tendon repairs. However, standard 2 strand techniques have proved inadequate to bear the higher biomechanic demands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00402-018-03105-3 | DOI Listing |
Sci Rep
January 2025
School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
The ore mining sites commonly experience slope instability, which is causing concern for the workers' safety and the operation's stability. Considering the Ziluoyi iron ore mining site as a case study, uniaxial compression strength and shear tests are performed on the lower disk peripheral rock, ore body, and upper disk peripheral rock, leading to the extraction of compressive strength and elastic modulus (lower disk: 77.7 MPa-9.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
The treatment of diabetic foot ulcers (DFUs) represents a significant challenge due to the complexity of the wound microenvironment. Several factors, including infection, inflammation, and impaired angiogenesis, can complicate the healing process and reduce the effectiveness of current clinical treatments. To address these challenges, this work develops a multifunctional sponge containing a zeolitic imidazolate framework-8/bacterial cellulose (ZIF-8/BC) matrix loaded with the antioxidant naringin (Nar).
View Article and Find Full Text PDFJACC Asia
December 2024
Primary Aldosteronism Center in National Taiwan University Hospital, TAIPAI (Taiwan Primary Aldosteronism Investigation) Study Group, Taiwan.
Background: In this study, we developed and validated machine learning models to predict primary aldosteronism (PA) in hypertensive East-Asian patients, comparing their performance against the traditional saline infusion test. The motivation for this development arises from the need to provide a more efficient and standardized diagnostic approach, because the saline infusion test, although considered a gold standard, is often cumbersome, is time-consuming, and lacks uniform protocols. By offering an alternative diagnostic method, this study seeks to enhance patient care through quicker and potentially more reliable PA detection.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital, Affiliated to Anhui Medical University No. 246 of Heping Road, Yaohai District Hefei Anhui 230011 China
: to address the issue of burst drug release in antibiotic-loaded poly(methyl methacrylate) (PMMA) bone cement (ALBC), this study involved preparation of novel PMMA bone cement and determination of its antibacterial activity, biocompatibility, compressive properties, maximum temperature, and setting time. : a novel acrylic monomer, which contains the 3,4-dichloro-5-hydroxyfuran-2(5)-one (DHF), was synthesized and utilized to develop non-leaching antibacterial PMMA bone cement (NLBC), designated as DHF-methacrylic acid (DHF-MAA) bone cement. In the preparation of this bone cement, DHF-MAA served as a key component of the liquid phase.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, MS, India. Electronic address:
Wounds are one of the most critical clinical issues in plastic surgery repair and restoration. Conventional wound dressing materials cannot absorb enough wound exudates and shield the site from microbial infection. Also, despite their healing prowess, bioactive molecules from medicinal plants are less bioavailable at the wound sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!