Purpose: TB nanodiagnostics have witnessed considerable development. However, most of the published reports did not proceed beyond proof-of-concept. Our objectives are to evaluate the diagnostic accuracy of a novel nanogold assay in detecting patients with active pulmonary TB based on results of BACTEC MGIT (reference test), and to compare its clinical performance to combined use of sputum smear microscopy (SSM) with chest X-ray (CXR).

Methods: This is a case-control study that involved 20 active TB patients; 20 non-TB chest patients with a previous history of TB infection; 20 non-TB chest patients without a previous history of TB infection.

Results: Sensitivity and specificity of TB nanogold assay were 95% and 100%, respectively, with diagnostic odds ratio (DOR) of 1053.0. ROC curve analysis yielded an area under curve (AUC) of 0.975. TB nanogold assay generated higher performance than combined use of SSM with CXR. The DOR and AUC differences were 996.0 and 0.125, respectively.

Conclusions: Our study shows that TB nanogold assay is accurate, rapid, and holds the potential for use as an add-on initial test to improve accuracy of SSM and CXR in detecting patients of active pulmonary TB in developing countries. Future studies should involve larger sample size for further assessment of test accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00408-018-00194-0DOI Listing

Publication Analysis

Top Keywords

nanogold assay
20
detecting patients
8
patients active
8
active pulmonary
8
performance combined
8
non-tb chest
8
chest patients
8
patients previous
8
previous history
8
ssm cxr
8

Similar Publications

Insulated gate bipolar transistors (IGBTs), as an important power semiconductor device, are susceptible to thermal stress, thermal fatigue, and mechanical stresses under high-voltage, high-current, and high-power conditions. Elevated heat dissipation within the module leads to fluctuating rises in temperature that accelerate its own degradation and failure, ultimately causing damage to the module as a whole and posing a threat to operator safety. Through ANSYS Workbench simulation analysis, it is possible to accurately predict the temperature distribution, equivalent stress, and equivalent strain of solder materials under actual working conditions, thus revealing the changing laws of the heat-mechanical interaction in solder materials.

View Article and Find Full Text PDF

Strongylus vulgaris, a devastating parasitic nematode in equids, causes life-threatening verminous aneurysms that are challenging to diagnose early. This study pioneered integrating nanotechnology into an indirect enzyme-linked immunosorbent assay (i-ELISA) system to enhance the sensitivity and specificity for detecting S. vulgaris larval antigens in equine serum samples, with PCR confirmation of the species.

View Article and Find Full Text PDF

Real-Time and Ultrasensitive Prostate-Specific Antigen Sensing Using Love-Mode Surface Acoustic Wave Immunosensor Based on MoS@CuO-Au Nanocomposites.

Sensors (Basel)

November 2024

Shenzhen Key Laboratory of Advanced Thin Films and Applications, GuangDong Engineering Technology Research Centre of Breath Test, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Prostate-specific antigen (PSA) is a well-established tumour marker for prostatic carcinoma. In this study, we present a novel, real-time, and ultrasensitive Love-mode surface acoustic wave (L-SAW) immunosensor for PSA detection enhanced by MoS@CuO-Au nanocomposite conjugation. The MoS@CuO-Au nanocomposites were analyzed by SEM, XRD, and EDS.

View Article and Find Full Text PDF

Telomerase activity has piqued scientists' interest for the reason that it has the potential to be employed for early-stage cancer detection, anticancer therapy and studies related to cancer progression and metastasis. Several approaches have been developed to detect telomerase activity. However, these approaches were lengthy, challenging to quantify, of limited sensitivity and prone to polymerase chain reaction (PCR)-related artefacts.

View Article and Find Full Text PDF
Article Synopsis
  • In situ cryo-Electron Microscopy (cryo-EM) allows researchers to study protein structures in their natural cellular environment, significantly advancing the understanding of macromolecular interactions.
  • Despite recent advancements, many proteins remain difficult to detect in cryo-EM due to their small size and low abundance, necessitating new methods for observation.
  • The introduction of novel nanogold probes for identifying specific proteins in live cells enhances cryo-ET and correlated light and electron microscopy (CLEM), facilitating efficient protein labeling and expanding the range of detectable proteins in cryo-EM studies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!