Temporal and Spatial Distributions of Bisphenol A in Marine and Freshwaters in Turkey.

Arch Environ Contam Toxicol

Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey.

Published: February 2019

Bisphenol A (BPA), a chemical component used in the manufacture of plastics, is commonly introduced to and detected in aquatic environments. This is the first study conducted to understand the distribution of BPA in the marine and freshwaters of Turkey. The purpose of this study is to report BPA concentrations measured from a time-series conducted in coastal waters of Erdemli and regional rivers located in the northeastern Mediterranean region. Furthermore, seawater samples obtained from other Turkish coastal areas-The Black Sea, Bosphorus, Sea of Marmara, and the Mediterranean Sea-also were investigated to gain a better understanding of regional and seasonal variations of BPA concentrations in Turkish Seas. Whilst spatial variation in BPA concentrations was very low, temporal variation was found to be high. It has been shown that BPA can reach the deep sea environment (> 500 m depth). This study indicated that BPA contamination has reached serious levels at another location in the world.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00244-018-00594-6DOI Listing

Publication Analysis

Top Keywords

bpa concentrations
12
marine freshwaters
8
freshwaters turkey
8
bpa
7
temporal spatial
4
spatial distributions
4
distributions bisphenol
4
bisphenol marine
4
turkey bisphenol
4
bisphenol bpa
4

Similar Publications

The obesogenic effects of Bisphenol A and its analogues are differentially regulated via PPARγ transactivation in mouse 3T3-L1 cells.

Toxicol In Vitro

January 2025

Environmental Health Science and Research Bureau (EHSRB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada. Electronic address:

Exposure to environmental pollutants with obesogenic activity is being recognised as one of the contributing factors to the obesity epidemic. Bisphenol A (BPA) has been shown to stimulate adipogenesis in both human and mouse preadipocytes, to increase body weight and affect lipid metabolism in animal and epidemiological studies. Regulatory action and public concern has prompted industry to replace BPA with other structurally similar analogues that may have similar effects.

View Article and Find Full Text PDF

Exploring the distribution and fate of bisphenol A in an aquatic microcosm combined with a multimedia model.

Ecotoxicol Environ Saf

January 2025

Institute of Pharmaceutical and Biomaterials, Lianyungang Normal College, Sheng Hu Lu 28, Lianyungang 222006, China. Electronic address:

Bisphenol A (BPA), a well-known endocrine-disrupting chemical, has garnered significant attention in environmental science and policy. BPA can enter the aquatic environment through different routes, posing potential risks even at a low concentration. In this study, a four-compartment system [water, sediment, biota (zebrafish), and submerged aquatic vegetation (Vallisneria natans)] of a point source continuous discharge microcosm was established to investigate the distribution and fate of BPA in an aquatic microcosm.

View Article and Find Full Text PDF

The sensitive Bisphenol A (BPA) detection by an electrochemical sensor based on gold nanoparticle-doped molecularly imprinted polymer was successfully improved. This study describes the development of a method for BPA detection in both aqueous solution and real water samples using N-methacroyl-(L)-cysteine methyl ester and N-methacryloyl-(L)-phenylalanine methyl ester coated pencil graphite electrodes modified with AuNPs by differential pulse voltammetry (DPV). Importantly, AuNPs, which increase the electroactivity, were used to increase the surface area of a BPA-imprinted pencil graphite electrode (MIP PGE) sensor.

View Article and Find Full Text PDF

A nitrogen-coordinated Fe single-atom catalyst (SA Fe-N/C) is synthesized using a homogeneous ethanol-based dissolution system with bamboo kraft lignin serving as the carbon source. Uniformly dispersed Fe atoms with an interatomic distance of less than 2 Å throughout the SA Fe-N/C structure are revealed through X-ray absorption spectral analysis and HAADF-STEM images, which possessed a high Fe loading of 2.69%.

View Article and Find Full Text PDF

Exploring factors influencing the spatial distribution and seasonal changes of BPA, TBBPA, and 20 analogs in China's marginal seas.

J Hazard Mater

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.

As emerging pollutants, bisphenol A (BPA), tetrabromobisphenol A (TBBPA) and its analogs have become widespread in the coastal environment of China. To investigate the occurrence of these novel contaminants in Chinese marginal sea, 176 seawater and 88 sediment samples were collected from the Yellow Sea and East China Sea. In seawater and sediment, the detection rates of TBBPA are 83.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!