In tomato (), as in other plants, the immunity hormone jasmonate (JA) triggers genome-wide transcriptional changes in response to pathogen and insect attack. These changes are largely regulated by the basic helix-loop-helix (bHLH) transcription factor MYC2. The function of MYC2 depends on its physical interaction with the MED25 subunit of the Mediator transcriptional coactivator complex. Although much has been learned about the MYC2-dependent transcriptional activation of JA-responsive genes, relatively less studied is the termination of JA-mediated transcriptional responses and the underlying mechanisms. Here, we report an unexpected function of MYC2 in regulating the termination of JA signaling through activating a small group of JA-inducible bHLH proteins, termed MYC2-TARGETED BHLH1 (MTB1), MTB2, and MTB3. MTB proteins negatively regulate JA-mediated transcriptional responses via their antagonistic effects on the functionality of the MYC2-MED25 transcriptional activation complex. MTB proteins impair the formation of the MYC2-MED25 complex and compete with MYC2 to bind to its target gene promoters. Therefore, MYC2 and MTB proteins form an autoregulatory negative feedback circuit to terminate JA signaling in a highly organized manner. We provide examples demonstrating that gene editing tools such as CRISPR/Cas9 open up new avenues to exploit genes for crop protection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391702 | PMC |
http://dx.doi.org/10.1105/tpc.18.00405 | DOI Listing |
mBio
January 2025
Department of Microbiology, UMass Chan Medical School, Worcester, Massachusetts, USA.
Unlabelled: (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, .
View Article and Find Full Text PDFFront Immunol
January 2025
Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy.
Background: Subjects with immune-mediated inflammatory diseases (IMID), such as rheumatoid arthritis, with tuberculosis infection (TBI), have a high probability of progressing to tuberculosis disease (TB). We aim to characterize the impact of IMID on the immune response to (Mtb) in patients with TBI and TB disease.
Methods: We enrolled TBI and TB patients with and without IMID.
Although granulomatous interstitial nephritis (GIN) is a rare histological finding in kidney transplants, the joint occurrence of GIN and focal segmental glomerulosclerosis (FSGS) has not, to our knowledge, been reported in the literature. We report a case of GIN and de novo FSGS in kidney transplant recipients leading to allograft failure. A 69-year-old male with a history of end-stage renal disease (ESRD) of unknown etiology, as well as liver failure from hepatitis B and C co-infection, initially had a living unrelated kidney transplant (LURT) in 2007 and subsequently received both liver and kidney transplants (SLKTs) in 2017.
View Article and Find Full Text PDFMicroorganisms
January 2025
Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
Tuberculosis (TB) remains the major cause of mortality and morbidity, causing approximately 1.3 million deaths annually. As a highly successful pathogen, () has evolved numerous strategies to evade host immune responses, making it essential to understand the interactions between and host cells.
View Article and Find Full Text PDFSci Rep
January 2025
National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong, China.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global public health issue with high mortality rates and challenges posed by drug-resistant strains, emphasizing the continued need for new therapeutic targets and effective treatment strategies. Transcriptomics is a highly effective tool for the development of novel anti-tuberculosis drugs. However, most studies focus only on changes in gene expression levels at specific time points.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!