Objective: Diabetes mellitus (DM) is associated with an increased fracture risk; however, the impact of DM and subsequent fracture at different sites and the associations according to patient characteristics remain unknown.

Design: Meta-analysis DATA SOURCES: The PubMed, EMBASE and Cochrane Library databases were searched from inception to March 2018.

Eligibility Criteria: We included prospective and retrospective cohort studies on the associations of DM and subsequent fracture risk at different sites.

Data Extraction And Synthesis: Two authors independently extracted data and assessed the study quality. Relative risks (RRs) with 95% CIs were calculated using a random-effects model, and the heterogeneity across the included studies was evaluated using I and Q statistics.

Results: Overall, DM was associated with an increased risk of total (RR: 1.32; 95% CI 1.17 to 1.48; p<0.001), hip (RR: 1.77; 95% CI 1.56 to 2.02; p<0.001), upper arm (RR: 1.47; 95% CI 1.02 to 2.10; p=0.037) and ankle fractures (RR: 1.24; 95% CI 1.10 to 1.40; p<0.001), whereas DM had no significant impact on the incidence of distal forearm (RR: 1.02; 95% CI 0.88 to 1.19; p=0.809) and vertebral fractures (RR: 1.56; 95% CI 0.78 to 3.12; p=0.209). RR ratios suggested that compared with patients with type 2 DM (T2DM), patients with type 1 DM (T1DM) had greater risk of total (RR: 1.24; 95% CI 1.08 to 1.41; p=0.002), hip (RR: 3.43; 95% CI 2.27 to 5.17; p<0.001) and ankle fractures (RR: 1.71; 95% CI 1.06 to 2.78; p=0.029). Although no other significant differences were observed between subgroups, the association of DM with upper arm or ankle, vertebrae and total fracture differed according to sex, study design and country, respectively.

Conclusions: Patients with DM had greater risks of total, hip, upper arm and ankle fractures, with T1DM having a more harmful effect than T2DM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326306PMC
http://dx.doi.org/10.1136/bmjopen-2018-024067DOI Listing

Publication Analysis

Top Keywords

diabetes mellitus
8
associated increased
8
fracture risk
8
subsequent fracture
8
risk
4
mellitus risk
4
risk fractures
4
fractures specific
4
specific sites
4
sites meta-analysis
4

Similar Publications

Technology usage and glycaemic outcomes in a single tertiary centre with an ethnically diverse and socioeconomically deprived cohort of children with type 1 diabetes mellitus.

Front Clin Diabetes Healthc

January 2025

Department of Endocrinology and Diabetes, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom.

Background: The UK National Paediatric Diabetes Audit (NPDA) data reports disparities in Haemoglobin A1c (HbA1c) levels among children and young people (CYP) with Type 1 Diabetes (T1D), with higher levels in those of Black ethnic background and lower socioeconomic status who have less access to technology. We investigate HbA1c differences in a T1D cohort with higher than national average technology uptake where > 60% come from an ethnic minority and/or socioeconomically deprived population.

Design & Methods: Retrospective cross-sectional study investigating the influence of demographic factors, technology use, and socioeconomic status (SES) on glycaemic outcomes.

View Article and Find Full Text PDF

Transcription factor specificity protein (SP) family in renal physiology and diseases.

PeerJ

January 2025

Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.

Dysregulated specificity proteins (SPs), members of the C2H2 zinc-finger family, are crucial transcription factors (TFs) with implications for renal physiology and diseases. This comprehensive review focuses on the role of SP family members, particularly SP1 and SP3, in renal physiology and pathology. A detailed analysis of their expression and cellular localization in the healthy human kidney is presented, highlighting their involvement in fatty acid metabolism, electrolyte regulation, and the synthesis of important molecules.

View Article and Find Full Text PDF

Objective: To investigate the altered characteristics of cortical morphology and individual-based morphological brain networks in type 2 diabetes mellitus (T2DM), as well as the neural network mechanisms underlying cognitive impairment in T2DM.

Methods: A total of 150 T2DM patients and 130 healthy controls (HCs) were recruited in this study. The study used voxel- and surface-based morphometric analyses to investigate morphological alterations (including gray matter volume, cortical thickness, cortical surface area, and localized gyrus index) in the brains of T2DM patients.

View Article and Find Full Text PDF

Unlocking the mechanistic potential of for managing diabetic neuropathy and nephropathy.

J Tradit Complement Med

November 2024

Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.

Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. , a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition.

View Article and Find Full Text PDF

Emerging evidence suggests cell exfoliation could be operating under the control of cell metabolism. It is unclear if there are associations between the concentration of exfoliated kidney proximal tubule cells (PTCs) in urine with glycemic control and complications. Our study is aimed at exploring this.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!