Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles.

Talanta

CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China. Electronic address:

Published: March 2019

In this study, the asymmetrically modified gold nanoparticles (AuNPs) with relatively large size are proposed for highly sensitive detection of melamine in raw milk. At first, we found that the sensitivity of colorimetric detection of melamine based on the conventional citrate-stabilized AuNPs could be significantly increased (limit of detection by visual observation: from 1 μmol L to 1 nmol L) via enlarging the size of AuNPs (from 13 to 42 nm). However, the large-sized AuNPs are unstable in the solution, and the accuracy of relevant aggregation-based colorimetric detection method is dramatically decreased due to the rapid evanishment of the color of solution caused by the precipitation of large-scaled AuNPs aggregates after introducing melamine. In view of this limitation, the stabilizing agent polyethylene glycol (PEG) is introduced onto the selected area at the surface of AuNPs to stabilize the large-sized AuNPs sensor and further adjust the aggregation behavior in an oriented and controllable manner. As a result, the addition of melamine into asymmetrically PEGylated AuNPs with large size could still induce a color change from purple to blue, but the color change could be maintained in aqueous solution for a long time. This improvement is mainly caused by forming stable and oriented oligomers of AuNPs taking advantage of the asymmetrical modification of AuNPs with PEG chain in this system. Such a way of aggregation leads to remarkably enhanced long-term stability and an at least 2 orders of magnitude wider dynamic detection range (1.05 nmol L to 1 mmol L) compared with conventional AuNPs sensors. Finally, such a novel asymmetrically modified AuNPs sensor is successfully applied to detect melamine in the raw milk with the satisfactory spiked recovery from 99.6% to 103.7% and RSD of about 3.0%. This work provides a sensitive and reliable method to detect melamine in pretreated milk, indicating a new avenue to make innovation on colorimetric sensors for real sample detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2018.10.070DOI Listing

Publication Analysis

Top Keywords

colorimetric detection
12
detection melamine
12
raw milk
12
aunps
12
asymmetrically pegylated
8
gold nanoparticles
8
asymmetrically modified
8
aunps large
8
large size
8
melamine raw
8

Similar Publications

Noble metal nanoparticles have attracted tremendous attention as the promising signal reporters for catalytic-colorimetric lateral flow immunoassay (LFIA). However, it remains great challenges for improving their stability and catalytic activity. Herein, first, a kind of porphyrinic based metal-organic framework (MOF) was used as a carrier for loading platinum (Pt) nanoparticles to avoid its aggregation.

View Article and Find Full Text PDF

A new Donor-Acceptor type pyrazinacene derivative (1) featuring strong ICT was synthesized by linking electron-donating triphenylamine (TPA) and electron-accepting CN groups via a pyrazinacene core. The compound exhibits a dramatic color change from greenish blue to red-violet upon selective recognition of naphthalene (3) to form a 1:1 co-crystal (1•3). This color change is induced by intermolecular CT between pyrazinacene and naphthalene's aromatic moieties, driven by π-hole···π interactions.

View Article and Find Full Text PDF

Phytochemical and Biological Investigations of Crude Extracts of .

Pharmaceuticals (Basel)

December 2024

Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, TR-03100 Afyonkarahisar, Turkey.

: L. is a genus of the Fabaceae family, encompassing over 3000 species globally, with 380 species found in Turkey. This is the inaugural examination of the phytochemical, antioxidant, antibacterial, and cytotoxic properties of .

View Article and Find Full Text PDF

A Label-Free Colorimetric Aptasensor for Flavokavain B Detection.

Sensors (Basel)

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.

Flavokavain B (FKB), a hepatotoxic chalcone from (kava), has raised safety concerns due to its role in disrupting redox homeostasis and inducing apoptosis in hepatocytes. Conventional chromatographic methods for FKB detection, while sensitive, are costly and impractical for field applications. In this work, DNA aptamers were selected using the library-immobilized method and high-throughput sequencing.

View Article and Find Full Text PDF

Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!