Altered reward processing is a transdiagnostic factor implicated in a wide range of psychiatric disorders. While prior animal and adult research has shown that stress contributes to reward dysfunction, less is known about how stress impacts reward processing in youth. Towards addressing this gap, the present study probed neural activation associated with reward processing following an acute stressor. Healthy adolescents (n = 40) completed a clinical assessment, and fMRI data were acquired while participants completed a monetary guessing task under a no-stress condition and then under a stress condition. Based on prior literature, analyses focused on a priori defined regions-of-interest, specifically the striatum (win trials) and dorsal anterior cingulate cortex [dACC] and insula (loss trials). Two main findings emerged. First, reward-related neural activation (i.e., striatum) was blunted in the stress relative to the no-stress condition. Second, the stress condition also contributed to blunted neural response following reward in loss-related regions (i.e., dACC, anterior insula); however, there were no changes in loss sensitivity. These results highlight the importance of conceptualizing neural vulnerability within the presence of stress, as this may clarify risk for mental disorders during a critical period of development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319717 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209361 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!