Dualities for Ising Networks.

Phys Rev Lett

Centre for Research in String Theory, School of Physics and Astronomy Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.

Published: December 2018

In this Letter, we study the equivalence between planar Ising networks and cells in the positive orthogonal Grassmannian. We present a microscopic construction based on amalgamation, which establishes the correspondence for any planar Ising network. The equivalence allows us to introduce two recursive methods for computing correlators of Ising networks. The first is based on duality moves, which generate networks belonging to the same cell in the Grassmannian. This leads to fractal lattices where the recursion formulas become the exact renormalization group equations of the effective couplings. The second, we use an amalgamation in which each iteration doubles the size of the seed lattice. This leads to an efficient way of computing the correlator where the complexity scales logarithmically with respect to the number of spin sites.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.121.251604DOI Listing

Publication Analysis

Top Keywords

ising networks
12
planar ising
8
dualities ising
4
networks
4
networks letter
4
letter study
4
study equivalence
4
equivalence planar
4
networks cells
4
cells positive
4

Similar Publications

Background: Trauma-focused psychotherapy is treatment of choice for post-traumatic stress disorder (PTSD). However, about half of patients do not respond. Recently, there is increased interest in brain criticality, which assesses the phase transition between order and disorder in brain activity.

View Article and Find Full Text PDF

Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process.

View Article and Find Full Text PDF

Quantum Computing in Community Detection for Anti-Fraud Applications.

Entropy (Basel)

November 2024

Beijing QBoson Quantum Technology Co., Ltd., Beijing 100015, China.

Fraud detection within transaction data is crucial for maintaining financial security, especially in the era of big data. This paper introduces a novel fraud detection method that utilizes quantum computing to implement community detection in transaction networks. We model transaction data as an undirected graph, where nodes represent accounts and edges indicate transactions between them.

View Article and Find Full Text PDF

Spatial Optical Simulator for Classical Statistical Models.

Phys Rev Lett

December 2024

Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China.

Optical simulators for the Ising model have demonstrated great promise for solving challenging problems in physics and beyond. Here, we develop a spatial optical simulator for a variety of classical statistical systems, including the clock, XY, Potts, and Heisenberg models, utilizing a digital micromirror device composed of a large number of tiny mirrors. Spins, with desired amplitudes or phases of the statistical models, are precisely encoded by a patch of mirrors with a superpixel approach.

View Article and Find Full Text PDF

A restricted Boltzmann machine is a fully connected shallow neural network. It can be used to solve many challenging optimization problems. The Boltzmann machines are usually considered probability models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!