Spin Splitting Induced in a Superconductor by an Antiferromagnetic Insulator.

Phys Rev Lett

Department of Physics, University of Konstanz, D-78457 Konstanz, Germany.

Published: December 2018

Inspired by recent feats in exchange coupling antiferromagnets to an adjacent material, we demonstrate the possibility of employing them for inducing spin splitting in a superconductor, thereby avoiding the detrimental, parasitic effects of ferromagnets employed to this end. We derive the Gor'kov equation for the matrix Green's function in the superconducting layer, considering a microscopic model for its disordered interface with a two-sublattice magnetic insulator. We find that an antiferromagnetic insulator with effectively uncompensated interface induces a large, disorder-resistant spin splitting in the adjacent superconductor. In addition, we find contributions to the self-energy stemming from the interfacial disorder. Within our model, these mimic impurity and spin-flip scattering, while another breaks the symmetries in particle-hole and spin spaces. The latter contribution, however, drops out in the quasiclassical approximation and thus, does not significantly affect the superconducting state.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.121.247702DOI Listing

Publication Analysis

Top Keywords

spin splitting
12
antiferromagnetic insulator
8
spin
4
splitting induced
4
induced superconductor
4
superconductor antiferromagnetic
4
insulator inspired
4
inspired feats
4
feats exchange
4
exchange coupling
4

Similar Publications

Chiral effects at the metal center in Fe(III) spin crossover coordination salts.

J Phys Condens Matter

December 2024

Department of Physics and Astronomy, University of Nebraska-Lincoln, Jorgenesen Hall, 855 North 16th Street, Lincoln, Nebraska, 68588-0299, UNITED STATES.

Evidence of chirality was observed at the Fe metal center in Fe(III) spin crossover coordination salts [Fe(qsal)Ni(dmit)] and [Fe(qsal)(TCNQ)] from X-ray absorption spectroscopy at the Fe 2pcore threshold. Based on the circularly polarized X-ray absorption data, the X-ray natural circular dichroism seen [Fe(qsal)Ni(dmit)] and [Fe(qsal)(TCNQ)] is far stronger than seen for [Fe(qsal)Cl] suggesting this natural circular dichroism signature is a ligand effect rather than a result of just a loss of octahedral symmetry on the Fe core. The larger the chiral effects in the Fe 2p core to bound X-ray absorption, the greater the perturbation of the Fe 2pto 2pspin-orbit splitting seen in the X-ray absorption spectra.

View Article and Find Full Text PDF

Transition metal mechanophores exhibiting force-activated spin-crossover are attractive design targets, yet large-scale discovery of them has not been pursued due in large part to the time-consuming nature of trial-and-error experiments. Instead, we leverage density functional theory (DFT) and external force explicitly included (EFEI) modeling to study a set of 395 feasible Fe and Co mechanophore candidates with tridentate ligands that we curate from the Cambridge Structural Database. Among nitrogen-coordinating low-spin complexes, we observe the prevalence of spin crossover at moderate force, and we identify 155 Fe and Co spin-crossover mechanophores and derive their threshold force for low-spin to high-spin transition ().

View Article and Find Full Text PDF

Recent years have witnessed an intense effort to unravel magnetic field effects in electrocatalysis, as they can enhance the performance of common electrocatalysts. Both experimental and theoretical studies have shown that magnetic fields may affect, among others, the macroscopic spin-orbital ordering, charge transport, bubble release, and electron transfer kinetics. This paper highlights Electrochemical Impedance Spectroscopy (EIS) as a tool to analyze and separate the effects of magnetic field on both the oxygen reduction and evolution reactions at cobalt iron oxide electrodes.

View Article and Find Full Text PDF

Compositionally Tunable Magneto-optical Properties of Lead-Free Halide Perovskite Nanocrystals.

J Phys Chem Lett

December 2024

Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

Inorganic lead-free metal halide perovskites have garnered much attention as low-toxicity alternatives to lead halide perovskites for luminescence and photovoltaic applications. However, the electronic structure and properties of these materials, including the composition dependence of the band structure, spin-orbit coupling, and Zeeman effects, remain poorly understood. Here, we investigated vacancy-ordered CsBiX (X= Cl, Br) perovskite nanocrystals using magnetic circular dichroism spectroscopy.

View Article and Find Full Text PDF

Magnetic field regulation is an effective strategy to improve the photocatalytic activity of magnetic semiconductor photocatalysts, but it is not suitable for widely used nonmagnetic photocatalytic semiconductors. Here, we report a Zeeman effect-driven spin-polarized band splitting phenomenon in diluted magnetic semiconductors that show efficient photocatalytic CO reduction under visible-light irradiation. A flexible Ni-doped BaTiO nanofiber film is used as the diluted magnetic semiconductor model to prove this concept.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!