A novel series of pyrido[1,2- a]benzimidazoles bearing Mannich base side chains and their metabolites were synthesized and evaluated for in vitro antiplasmodium activity, microsomal metabolic stability, reactive metabolite (RM) formation, and in vivo antimalarial efficacy in a mouse model. Oral administration of one of the derivatives at 4 × 50 mg/kg reduced parasitemia by 95% in Plasmodium berghei-infected mice, with a mean survival period of 16 days post-treatment. The in vivo efficacy of these derivatives is likely a consequence of their active metabolites, two of which showed potent in vitro antiplasmodium activity against chloroquine-sensitive and multidrug-resistant Plasmodium falciparum ( P. falciparum) strains. Rapid metabolism was observed for all the analogues with <40% of parent compound remaining after 30 min of incubation in liver microsomes. RM trapping studies detected glutathione adducts only in derivatives bearing 4-aminophenol moiety, with fragmentation signatures showing that this conjugation occurred on the phenyl ring of the Mannich base side chain. As with amodiaquine (AQ), interchanging the positions of the 4-hydroxyl and Mannich base side group or substituting the 4-hydroxyl with fluorine appeared to block bioactivation of the AQ-like derivatives though at the expense of antiplasmodium activity, which was significantly lowered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsinfecdis.8b00279 | DOI Listing |
Biomedicines
December 2024
Departamento de Ciência Básica, Instituto de Saúde de Nova Fribrugo, Universidade Federal Fluminense, Nova Friburgo 28625-650, RJ, Brazil.
Pyruvate kinase M2, a central regulator of cancer cell metabolism, has garnered significant attention as a promising target for disrupting the metabolic adaptability of tumor cells. This study explores the potential of the Mannich base derived from lawsone () to interfere with PKM2 enzymatic activity both in vitro and in silico. The antiproliferative potential of was tested using MTT assay in various cell lines, including SCC-9, Hep-G2, HT-29, B16-F10, and normal human gingival fibroblast (HGF).
View Article and Find Full Text PDFRSC Adv
December 2024
Petru Poni Institute of Macromolecular Chemistry, Department of Inorganic Polymers Iaşi 700487 Romania
A phenolic Mannich base derived from 1'-hydroxy-2'-acetonaphthone (HAN) as a substrate and morpholine as an amine reagent was synthesized and structurally characterized. The sensing ability toward various metal ions of the s-, p- and d-block of this molecule that has the binding site for metal ions in the starting -hydroxyphenone preserved was examined. Interaction between this phenolic Mannich base and Al, Cr, Cu and Co leads to modifications of the sensing molecule's absorption spectrum.
View Article and Find Full Text PDFInorg Chem
December 2024
MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7-8, Szeged H-6720 , Hungary.
Drug resistance is a major obstacle in cancer treatment. Herein, four novel organometallic complexes, with the general formula [Ru(η--cymene)(HL)Cl]Cl and [Rh(η-CMe)(HL)Cl]Cl, were developed to target multidrug-resistant (MDR) cancer cells, where HL denotes 8-hydroxyquinoline-derived Mannich bases (HQCl-pyr and HQCl-pip). The aim of the complexation was to obtain compounds with improved drug-like properties.
View Article and Find Full Text PDFFree Radic Res
November 2024
Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
Free radicals are ubiquitous in biological systems, being responsible for pathogenesis of degenerative diseases and participating in vitally important biochemical processes, which are mediated by radical regulatory agents. The effects of the aliphatic amine substituents in the catechol-derived Mannich bases on their antioxidant and pro-oxidant activity were investigated. It has been found that the presence of catechol moiety in the structure of Mannich bases allows them to act as Cu(II) reductants, efficient Fe(II) chelators and potent DPPH radical scavengers.
View Article and Find Full Text PDFChemMedChem
November 2024
Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Academika Kukharya Str. 1, 02094, Kyiv, Ukraine.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!