Nanographene favors electronic interactions with an electron acceptor rather than an electron donor in a planar fused push-pull conjugate.

Nanoscale

Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.

Published: January 2019

A combination of a preexfoliated nanographene (NG) dispersion and fused electron donor-acceptor tetrathiafulvalene-perylenediimide (TTF-PDI) results in a noncovalent functionalization of NG. Such novel types of nanohybrids were characterized by complementary spectroscopic and microscopic techniques. The design strategy of the chromophoric and electroactive molecular conjugate renders a large and planar π-extended system with a distinct localization of electron-rich and electron-poor parts at either end of the molecular conjugate. Within the in situ formed nanohybrid, the conjugate was found to couple electronically with NG preferentially through the electron accepting PDI rather than the electron donating TTF and to form the one-electron reduced form of PDI, which corresponds to p-doping of graphene.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr06961aDOI Listing

Publication Analysis

Top Keywords

molecular conjugate
8
electron
5
nanographene favors
4
favors electronic
4
electronic interactions
4
interactions electron
4
electron acceptor
4
acceptor electron
4
electron donor
4
donor planar
4

Similar Publications

The emerging combination of chemotherapy and radionuclide therapy has been actively investigated to overcome the limitations of monotherapy and augment therapeutic efficacy. However, it remains a challenge to design a single delivery vehicle that can incorporate chemotherapeutics and radionuclides into a compact structure. Here, a chelator DOTA- or NOTA-modified Evans blue conjugated camptothecin molecule (EB-CPT) nanoprodrug was synthesized, which could self-assemble into nanoparticles due to its inherent amphiphilicity.

View Article and Find Full Text PDF

Diabetes mellitus, particularly type 2 diabetes, is a growing global health challenge characterized by chronic hyperglycemia due to insulin resistance. One therapeutic approach to managing this condition is the inhibition of α-glucosidase, an enzyme involved in carbohydrate digestion, to reduce postprandial blood glucose levels. In this study, a series of thiosemicarbazide-linked quinoline-piperazine derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity, to identify new agents for type 2 diabetes management.

View Article and Find Full Text PDF

The bioconjugates of curcumin, zingerone and [6]-shogaol with low molecular weight chitosan: Synthesis, characterization and in vitro anticancer activity in HepG2 cells.

Int J Biol Macromol

January 2025

Department of Plantation Products, Spices & Flavour Technology, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

The synthesis of bioconjugates of curcumin, zingerone, and [6]-shogaol with low molecular weight chitosan (LMWC) is presented. The unconjugated forms of these compounds exhibit low water solubility, poor stability, limited bioavailability, and low target specificity, whereas the synthetic conjugates demonstrate improved physical properties. The synthesis was achieved by forming succinates & then reacting with LMWC.

View Article and Find Full Text PDF

HER2-positive gastric cancer (GC), a unique molecular subtype, has garnered significant interest in recent years. Here, we review clinical trial data on advanced HER2-positive GC from the past 15 years. Trastuzumab plus standard chemotherapy remain the first-line treatment.

View Article and Find Full Text PDF

B- and N-heterocyclic fluorophores have reveal promising efficiency in blue organic light-emitting diodes (OLEDs) with small full-width-at-half-maximum (FWHM). However, their structural determinants for spectral broadening and operating stability are still needed to be investigated in further. Herein, a novel multi-N-heterocycles Diindolo[3,2,1jk:3',2',1'jk]dicarbazole[1,2-b:4,5-b] (DIDCz) is proposed to manipulate the emission color toward pure blue region by extending π-conjugation of the N-π-N bridge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!