Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/NND.0000000000000509 | DOI Listing |
ISA Trans
December 2024
Robotic Research Laboratory, Centre of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran.
In this paper, trajectory tracking control as the pursuit of a specific target by wheel-legged mobile robots (WLMRs) in an environment with the presence of obstacles is presented. These types of robots are designed to navigate different paths such as slippery trajectories, paths with obstacles, and other challenging paths. In addition, the robot can move its legs in different surface conditions and operate more flexibly with the help of wheels attached to the legs.
View Article and Find Full Text PDFDent Mater
January 2025
Department of Oral Technology, Medical Faculty, University Hospital Bonn, Bonn, North Rhine-Westphalia, Germany; Department of Fixed Prosthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt.
Objectives: To compare the flexural strength and modulus of denture base resins manufactured by conventional methods, 3-dimensional (3D) printing, and computer-aided design and computer-aided manufacturing (CAD/CAM) milling using 3-point bending (3PB) and 4-point bending (4PB) methods after simulated aging.
Methods: Ninety bars (64 ×10 ×3.3 mm) were prepared from heat-polymerized (Lucitone-199), CAD/CAM milled (G-CAM), and 3D-printed (Denturetec) denture base resins (n = 30 per material).
J Therm Biol
January 2025
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China.
Magnetic nanoparticles (MNPs) used for magnetic hyperthermia can not only damage tumor cells after elevating to a specific temperature but also provide the temperature required for thermosensitive liposomes (TSL) to release doxorubicin (DOX). MNPs injected into tumor will generate heat under an alternating magnetic field, so the MNPs distribution can determine temperature distribution and further affect the DOX concentration used for tumor therapy. This study proposes an asynchronous injection strategy for this combination therapy in order to improve the DOX concentration value for drug therapy, in which the MNPs are injected into tumor after a certain lagging of TSL injection in order to increase the TSL concentration inside tumor.
View Article and Find Full Text PDFAm J Emerg Med
December 2024
Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. Electronic address:
Background: Recent studies have validated the efficacy of point-of-care ultrasound (POCUS) as an alternative diagnostic imaging approach to computed tomography (CT) for patients with suspected acute diverticulitis. This study aimed to quantify the national impact of this approach in cost savings, ED length-of-stay (LOS), and radiation risk mitigation using a POCUS-first approach for acute diverticulitis in the emergency department (ED).
Methods: Using published data, we constructed a Monte Carlo simulation model to compare two POCUS-first strategies (nonselective and selective approaches) for evaluating patients with suspected acute diverticulitis in the ED.
Langmuir
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!