Purpose Of Review: The utilization of genetically modified T cells to therapeutically target to various previously incurable diseases such, as cancer, has expanded exponentially in recent years. This success now provides the motivating force in applying the same technology for incurable infectious diseases including HIV. The common bottleneck in gene therapy continues to be at the level of gene delivery. Although present approaches adapt the cell to the delivery technology, emerging techniques now focus on leaving cells in their phenotypically resting state. In doing so, engraftment and proliferation potential are retained and in turn increase the efficacy of this approach at a lowered cost. This review will outline the main efforts of gene delivery using viral vectors or nonviral vectors and challenges moving forward not only in resting T cells, but also in other resting immune cells including hematopoietic stem cells.
Recent Findings: In focusing on HIV cure efforts using gene therapy, progress on solving the challenges of gene delivery will be described for both viral and nonviral vectors. Advances in the basic virology of lentiviruses have led to the proposal of many next generation lentiviral vector platforms for resting immune cells. Moreover, we will also highlight the progress made in nonviral approaches using nanotechnology as alternatives and/or synergistic technologies to be used alongside lentiviral platforms.
Summary: The innovative approaches described in these recent studies, particularly those using the natural mechanisms employed by HIV to enhance for example virus entry or virus latency, will enable future optimization of gene delivery platforms and therapeutics, which will importantly, provide a pathway toward translation into clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/COH.0000000000000531 | DOI Listing |
Nat Commun
January 2025
CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
Prime Editing can rewrite genes in living cells by allowing point mutations, deletions, or insertion of small DNA sequences with high precision. However, its safe and efficient delivery into human stem cells remains a technical challenge. In this report, we engineer Nanoscribes, virus-like particles that encapsidate ribonucleoprotein complexes of the Prime Editing system and allow their delivery into recipient cells.
View Article and Find Full Text PDFJ Transl Med
January 2025
Evvivax Biotech, Via Castel Romano 100, 00128, Rome, Italy.
In the past decades, Chimeric Antigen Receptor (CAR)-T cell therapy has achieved remarkable success, leading to the approval of six therapeutic products for haematological malignancies. Recently, the therapeutic potential of this therapy has also been demonstrated in non-tumoral diseases. Currently, the manufacturing process to produce clinical-grade CAR-T cells is complex, time-consuming, and highly expensive.
View Article and Find Full Text PDFNeurotherapeutics
January 2025
Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA. Electronic address:
Spinal cord injury (SCI) significantly alters gene expression, potentially impeding functional recovery. This study investigated the effects of atorvastatin, a widely prescribed cholesterol-lowering drug, on gene expression and functional recovery in a chronic murine SCI model. Female C57BL/6J mice underwent moderate 0.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran.
This study aimed to achieve two main objectives: first, to determine whether the virulence factors of symbiotic bacteria of entomopathogenic nematodes (EPNs) against insect hosts are cell-associated or secreted, and to shed light on the underlying mechanisms of pathogenicity; and second, to identify and evaluate the standalone pathogenicity of symbiotic bacteria associated with entomopathogenic nematodes against Tenebrio molitor. Three bacterial species, Xenorhabdus nematophila (A41, SC, A18 and SF), Photorhabdus kayaii, and P. thracensis, were isolated and characterized via phylogenetic analysis of 16S-rRNA and gyrB genes.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China; Department of Reproductive Medicine, the 1st affiliated hospital, Jiangxi Medical College, Nanchang University; Jiangxi Key Laboratory of Reproductive Health, Nanchang 330006, China; HuanKui College, Nanchang University, Nanchang 330031, China; Chongqing Research Institute of Nanchang University, Nanchang University, Nanchang 330006, China. Electronic address:
The impact of micro/nano plastics (MPs/NPs) on human health is a significant area of research. Studies on the effects of maternal exposure to microplastics (MPs) on the fertility in offspring have been conducted, but the damage caused by nanoplastics (NPs) remains ambiguous. In this study, pregnant Kunming mice were exposed to 30 mg/kg/day PS-NPs from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!