Damage of alveolar-capillary barrier, inflammation, oxidative injury, and lung cell apoptosis represent the key features of acute lung injury (ALI). This study evaluated if selective phosphodiesterase (PDE)-4 inhibitor roflumilast can reduce the mentioned changes in lavage-induced model of ALI. Rabbits with ALI were divided into 2 groups: ALI without therapy (A group) and ALI treated with roflumilast i.v. (1 mg/kg; A+R group). One group of healthy animals without ALI served as ventilated controls (C group). All animals were oxygen-ventilated for further 4 h. At the end of experiment, total and differential counts of cells in bronchoalveolar lavage fluid (BALF) and total and differential counts of white blood cells were estimated. Lung edema formation was assessed from determination of protein content in BALF. Pro-inflammatory cytokines (TNFalpha, IL-6 and IL-8) and markers of oxidation (3-nitrotyrosine, thiobarbituric-acid reactive substances) were detected in the lung tissue and plasma. Apoptosis of lung cells was investigated immunohistochemically. Treatment with roflumilast reduced leak of cells, particularly of neutrophils, into the lung, decreased concentrations of cytokines and oxidative products in the lung and plasma, and reduced lung cell apoptosis and edema formation. Concluding, PDE4 inhibitor roflumilast showed potent anti-inflammatory actions in this model of ALI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.33549/physiolres.934047 | DOI Listing |
BJU Int
December 2024
Fibrosis Research Group, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, UK.
Objectives: To investigate which phosphodiesterase (PDE) isoforms are expressed in fibroblasts isolated from the tunica albuginea (TA) of patients with Peyronie's disease (PD), and to measure the potency of PDE inhibitors in preventing transformation of these fibroblasts to profibrotic myofibroblasts.
Materials And Methods: Fibroblasts isolated from the TA of men undergoing surgery for correction of PD curvature were transformed to myofibroblasts using transforming growth factor beta-1. The expression of 21 PDE isoforms was investigated using quantitative reverse transcriptase-polymerase chain reaction and protein analysis, as were the effects of various PDE inhibitors on prevention of myofibroblast transformation.
JAAD Case Rep
December 2024
Department of Dermatology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia.
Int J Nanomedicine
December 2024
Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.
Background: Phosphodiesterase-4 is an enzyme that regulates immune responses and contributes to the development of psoriasis. Dipyridamole and roflumilast function as phosphodiesterase-4 inhibitors, reducing pro-inflammatory cytokine expression. The aim was to evaluate the anti-psoriatic effect of the topical administration of dipyridamole and roflumilast nanoemulgel combination on imiquimod-induced psoriasiform skin inflammation in rats.
View Article and Find Full Text PDFBr J Pharmacol
December 2024
Department of Pharmacology, University of California, Davis, Davis, California, USA.
Background And Purpose: Sarcoplasmic reticulum Ca-ATPase (SERCA2a) is impaired in heart failure. Phosphodiesterases (PDEs) are implicated in the modulation of local cAMP signals and protein kinase A (PKA) activity essential for cardiac function. We characterise PDE isoforms that underlie decreased activities of SERCA2a and reduced cardiac contractile function in diabetic cardiomyopathy.
View Article and Find Full Text PDFJ Invest Dermatol
November 2024
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, Connecticut, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!