Objectives: The present study aimed to determine whether intestinal epithelial cell (IECs) apoptosis could be induced by endoplasmic reticulum stress (ERS) in severe acute pancreatitis (SAP), and the role of chemical chaperone 4-phenylbutyric acid (4-PBA) in SAP-associated intestinal barrier injury.
Methods: Twenty-four male Sprague Dawley rats were randomly divided into three groups: the sham operation group, the SAP group, and the SAP model plus 4-PBA treatment group (4-PBA group). A rat model of SAP was induced by retrograde injection of 5% sodium taurocholate (STC) into the biliopancreatic duct; in the 4-PBA group, 4-PBA was injected intraperitoneally at a dose of 50 mg/kg body weight for 3 days before modeling.
Results: The results indicated that 4-PBA attenuated the following: (1) pancreas and intestinal pathological injuries, (2) serum TNF-α, IL-1β, and IL-6, (3) serum DAO level, serum endotoxin level, (4) the apoptosis of IECs, (5) ER stress markers (caspase-12, CHOP, GRP78, PERK, IRE1α, ATF6) and caspase-3 expression in intestinal. However, the serum AMY, LIPA levels, and the expression of caspase-9, caspase-8 were just slightly decreased.
Conclusions: ERS may be considered a predominant pathway, which is involved in the apoptosis of IECs during SAP. Furthermore, 4-PBA protects IECs against apoptosis in STC-induced SAP by attenuating the severity of ERS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10620-018-5437-1 | DOI Listing |
Mol Genet Genomic Med
January 2025
Group for Rare Disease Research and Therapeutics Development, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Republic of Serbia.
Introduction: Chronic endoplasmic reticulum (ER) stress and increased apoptosis are involved in the pathogenesis of glycogen storage disease Ib (GSD Ib), whereas small molecule phenylbutyrate (4-PBA) showed the capability of reducing ER stress-induced apoptosis. The objective was to generate an in vitro system in which capability of small molecules (SMs) to influence ER stress and apoptosis could be screened at the expression level.
Methods: G6PT-deficient FlpInHEK293 cell line was created and validated using the CRISPR/Cas9 knockout method.
Medicine (Baltimore)
January 2025
The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.
Background: To determine the efficacy of 4-phenylbutyrate (4-PB) or sodium 4-phenylbutyrate (SPB) in treating diseases caused by genetic mutations.
Methods: We searched PubMed, Web of Science, Cochrane Library, and EMBASE for studies of patients with genetic mutations treated with 4-PB or SPB. All data were tested using RStudio software.
Toxics
November 2024
Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA.
Microcystin (MC), a hepatotoxin produced by cyanobacteria, was introduced into the Indian River Lagoon (IRL), Florida, in 2005 through freshwater outflows. Since then, MC has been detected in humans, domestic animals, and wildlife in the lagoon. Potential public health effects associated with MC exposure along the IRL include an increased risk of non-alcoholic liver disease among area residents.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China. Electronic address:
Endometrial cancer (EC) is a common gynecological cancer, characterized by increasing incidence and mortality rates. Maackiain (MA), a natural flavonoid compound, has multiple biological activities, but little is known about how it affects EC cells. In the present study, CCK-8, EdU, colony formation, and flow cytometry assays were used to evaluate the effects of MA on EC cell proliferation, apoptosis, and reactive oxygen species (ROS) levels.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.
Osteogenesis imperfecta (OI) is an inheritable skeletal disorder characterized by bone fragility often caused by pathogenic variants in the COL1A1 gene. Current OI mouse models with a glycine substitution in Col1a1 exhibit excessive severity, thereby limiting long-term pathophysiological analysis and drug effect assessments. To address this limitation, we constructed a novel OI mouse model mimicking a patient with OI type III.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!