A MYB transcription factor is a candidate to control pungency in Capsicum annuum.

Theor Appl Genet

Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.

Published: April 2019

Identification of a novel pungency-controlling gene Pun3, which acts as a master regulator of capsaicinoid biosynthetic genes in Capsicum annuum. Capsaicinoid is a unique compound that gives hot peppers (Capsicum spp.) their spicy taste. The Pun1 and Pun2 loci are known to control pungency in Capsicum species. Whereas Pun1 encodes an acyltransferase, the identity of Pun2 is currently unknown. Here, we used recombinant inbred lines and F plants derived from a cross between the non-pungent C. annuum accession 'YCM334' and the pungent C. annuum cultivar 'Tean' to identify a novel non-pungency locus. Inheritance studies showed that non-pungency in C. annuum 'YCM334' is controlled by a single recessive gene, which we named Pun3. Using a high-density SNP map derived from genotyping-by-sequencing, Pun3 was mapped to chromosome 7. By comparing physical information about the Pun3 region in the C. annuum 'Zunla-1' and C. chinense 'PI159236' reference genomes, we identified candidate genes in this target region. One cDNA sequence from 'PI159236' was homologous to an unannotated gene in 'Zunla-1.' This sequence was also homologous to CaMYB31, which is expressed only in 'Tean' and harbors one stop codon in the non-pungent accession 'YCM334.' RNA-Seq analysis showed that major structural genes in the capsaicinoid biosynthetic pathway were significantly downregulated in 'YCM334' compared to pungent pepper. Therefore, CaMYB31 is a candidate gene for Pun3, which may act as a master regulator of capsaicinoid biosynthetic genes in pepper.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-018-03275-zDOI Listing

Publication Analysis

Top Keywords

capsaicinoid biosynthetic
12
control pungency
8
pungency capsicum
8
capsicum annuum
8
gene pun3
8
master regulator
8
regulator capsaicinoid
8
biosynthetic genes
8
accession 'ycm334'
8
annuum
6

Similar Publications

Plant Coumarin Metabolism-Microbe Interactions: An Effective Strategy for Reducing Imidacloprid Residues and Enhancing the Nutritional Quality of Pepper.

J Agric Food Chem

December 2024

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China.

Imidacloprid (IMI) stress positively correlates with the potential of coumarins to alleviate abiotic stress. However, little is known about the pathways and mechanisms by which coumarin reduces the IMI residue by regulating plant secondary metabolism and plant-microbe interactions. This study examined the impact of coumarin on the uptake, translocation, and metabolism of IMI in pepper plants by modulating the signal molecule levels and microbial communities in the rhizosphere and phyllosphere.

View Article and Find Full Text PDF

Naga chilli (Capsicum chinense Jacq.) have garnered significant attention due to the plant's possible health benefits and variety of phytochemical components. Utilizing cutting-edge analytical techniques such as gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC) in conjunction with bioautography, this study conducts a thorough phytochemical profiling and biological activity assessment of the Naga chilli plant.

View Article and Find Full Text PDF

CYP6B6 mediated adaptation to capsaicinoids in the generalist Helicoverpa armigera and specialist H. assulta: Transcriptional response and metabolic detoxification.

Int J Biol Macromol

December 2024

State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

Capsaicin and dihydrocapsaicin are the principal pungent compounds in hot peppers. The generalist Helicoverpa armigera and the specialist H. assulta are two of the few insects that can feed on hot pepper fruits.

View Article and Find Full Text PDF

AMP kinase: A promising therapeutic drug target for post-COVID-19 complications.

Life Sci

December 2024

Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia; Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India.

The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in severe respiratory issues and persistent complications, particularly affecting glucose metabolism. Patients with or without pre-existing diabetes often experience worsened symptoms, highlighting the need for innovative therapeutic approaches. AMPK, a crucial regulator of cellular energy balance, plays a pivotal role in glucose metabolism, insulin sensitivity, and inflammatory responses.

View Article and Find Full Text PDF

This study proposed ultrasound-assisted deep eutectic solvent (DES) for the extraction of capsaicinoids (CAP) from the placenta of lantern peppers. The DES of choline chloride-citric acid (ChCl-CA), with the highest CAP yield (8.25 mg/g) was screened.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!