The inhibition of abnormal amyloid β (Aβ) aggregation has been regarded as a good target to control Alzheimer's disease. The present study adopted 2D-QSAR, HQSAR and 3D QSAR (CoMFA & CoMSIA) modeling approaches to identify the structural and physicochemical requirements for the potential Aβ aggregation inhibition. A structure-based molecular docking technique is utilized to approve the features that are obtained from the ligand-based techniques on 30 curcumin derivatives. The combined outputs were then used to screen the modified 10 compounds. The 2D QSAR model on curcumin derivatives gave statistical values R = 0.9086 and SEE = 0.1837. The model was further confirmed by Y-randomization test and Applicability domain analysis by the standardization approach. The HQSAR study (Q = 0.615, R  = 0.931, R  = 0.956) illustrated the important molecular fingerprints for inhibition. Contour maps of 3D QSAR models, CoMFA (Q = 0.687, R  = 0.787, R  = 0.731) and CoMSIA (Q = 0.743, R  = 0.972, R  = 0.713), depict that the models are robust and provide explanation of the important features, like steric, electrostatic and hydrogen bond acceptor, which play important role for interaction with the receptor site cavity. The molecular docking study of the curcumin derivatives elucidates the important interactions between the amino acid residues at the catalytic site of the receptor and the ligands, indicating the structural requirements of the inhibitors. The ligand-receptor interactions of top hits were analyzed to explore the pharmacophore features of Aβ aggregation inhibition. The Aβ aggregation inhibitory activities of novel chemical entities were then obtained through inverse QSAR. The newly designed molecules were further screened through machine learning, prediction of toxicity and nature of metabolism to get the proposed six lead compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314802PMC
http://dx.doi.org/10.1007/s40203-018-0049-1DOI Listing

Publication Analysis

Top Keywords

aβ aggregation
16
molecular docking
12
curcumin derivatives
12
aggregation inhibition
8
aggregation
5
qsar
5
design novel
4
novel amyloid
4
amyloid aggregation
4
aggregation inhibitors
4

Similar Publications

ClpB, a bacterial homologue of heat shock protein 104 (Hsp104), can disentangle aggregated proteins with the help of the DnaK, a bacterial Hsp70, and its co-factors. As a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA), ClpB forms a hexameric ring structure, with each protomer containing two AAA modules, AAA1 and AAA2. A long coiled-coil middle domain (MD) is present in the C-terminal region of the AAA1 and surrounds the main body of the ring.

View Article and Find Full Text PDF

Structural determinants for protein unfolding and translocation by the Hsp104 protein disaggregase.

Biosci Rep

December 2017

Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, U.S.A.

Article Synopsis
  • *Key to Hsp104's function are specific amino acid loops in its ATP-binding domains that play crucial roles in substrate translocation and interaction.
  • *Research shows that both flanking aliphatic residues and loop-2 are vital for Hsp104's activity; mutations can significantly impair its function in disaggregating proteins.
View Article and Find Full Text PDF

Mutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase.

Front Mol Biosci

February 2017

Center for Molecular Biology of the Heidelberg University, German Cancer Research Center Heidelberg, Germany.

The members of the hexameric AAA+ disaggregase of and , ClpB, and Hsp104, cooperate with the Hsp70 chaperone system in the solubilization of aggregated proteins. Aggregate solubilization relies on a substrate threading activity of ClpB/Hsp104 fueled by ATP hydrolysis in both ATPase rings (AAA-1, AAA-2). ClpB/Hsp104 ATPase activity is controlled by the M-domains, which associate to the AAA-1 ring to downregulate ATP hydrolysis.

View Article and Find Full Text PDF

Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.

J Biol Chem

April 2015

From the Department of Biology, Faculty of Science and Engineering and the Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe 658-8501, Japan

Article Synopsis
  • * The chaperone utilizes ATP binding and hydrolysis to generate mechanical force necessary for disaggregating proteins, although the details of its ATPase cycle remain complex and poorly understood across different species.
  • * Research on ordered structures of ClpB from Thermus thermophilus revealed that ATP binding is random initially, but once enough ATP binds to one ring, it activates the other ring for cooperative ATP hydrolysis, which is essential for the protein disaggregation function of ClpB.
View Article and Find Full Text PDF

ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!