Hyperosmotic stress may result in osmotic volume loss from the body to the environment in animals that cannot control the water permeability of their integument. Euryhaline animals (which have a wide tolerance range of environmental salinities) have generally evolved the ability to counteract cell volume shrinkage by accumulating inorganic and organic osmolytes within their cells to balance internal and external osmolalities. Molluscs use very different combinations of amino acids and amino acid derivatives to achieve this goal. is a neritid gastropod that is distributed not only in limnic habitats in Europe but also in brackish waters (e.g. along the shoreline of the Baltic Sea). Animals from brackish sites survive better in high salinities than animals from freshwater locations. The results of the present study indicate that these differences in salinity tolerance cannot be explained by differences in the general ability to accumulate amino acids as organic osmolytes. Although there may be differences in the metabolic pathways involved in osmolyte accumulation in foot muscle tissue, the two groups of animals accumulate amino acid mixtures equally well when stepwise acclimated to their respective maximum tolerable salinity for extended periods. Among these amino acids, alanine and proline, as well as the osmolyte urea, hold a special importance for cell volume preservation in under hyperosmotic stress. It is possible that the accumulation of various amino acids during hyperosmotic stress occurs via hydrolysis of storage proteins, while alanine and proline are probably newly synthesised under conditions of hyperosmotic stress in the animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.193557 | DOI Listing |
Ocul Surf
January 2025
Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:
Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.
Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.
Pharmaceutics
January 2025
Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, SI, Italy.
(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.
View Article and Find Full Text PDFOcul Surf
January 2025
Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, 325000, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Zhejiang, 325000, China. Electronic address:
Unlabelled: The activation of the NLRP3 inflammasome by hyperosmotic stress is a critical pathophysiological response in dry eye disease (DED), driving the chronic cycle of inflammation on the ocular surface. The specific mechanism underlying hyperosmotic mechanical stimulation activates the NLRP3 inflammasome remains unclear. This study provides evidence that PIEZO1, a mechanosensitive ion channel, functions as the primary receptor for corneal epithelial cells in sensing mechanical stimulation induced by tear hyperosmolarity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China. Electronic address:
Autophagy is a conserved and unique degradation system in eukaryotic cells, which plays crucial roles in the growth, development and pathogenesis of Fungi. Despite that, it is poorly understood in Fusarium graminearum currently. Here, we identified an autophagy gene FgAtg27 from F.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!