The ion channels and synapses responsible for the physiological diversity of mammalian lower brainstem auditory neurons.

Hear Res

Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14019-900, Brazil. Electronic address:

Published: May 2019

The auditory part of the brainstem is composed of several nuclei specialized in the computation of the different spectral and temporal features of the sound before it reaches the higher auditory regions. There are a high diversity of neuronal types in these nuclei, many with remarkable electrophysiological and synaptic properties unique to these structures. This diversity reflects specializations necessary to process the different auditory signals in order to extract precisely the acoustic information necessary for the auditory perception by the animal. Low threshold Kv1 channels and HCN channels are expressed in neurons that use timing clues for auditory processing, like bushy and octopus cells, in order to restrict action potential firing and reduce input resistance and membrane time constant. Kv3 channels allow principal neurons of the MNTB and pyramidal DCN neurons to fire fast trains of action potentials. Calcium channels on cartwheel DCN neurons produce complex spikes characteristic of these neurons. Calyceal synapses compensate the low input resistance of bushy and principal neurons of the MNTB by releasing hundreds of glutamate vesicles resulting in large EPSCs acting in fast ionotropic glutamate receptors, in order to reduce temporal summation of synaptic potentials, allowing more precise correspondence of pre- and post-synaptic potentials, and phase-locking. Pre-synaptic calyceal sodium channels have fast recovery from inactivation allowing extremely fast trains of action potential firing, and persistent sodium channels produce spontaneous activity of fusiform neurons at rest, which expands the dynamic range of these neurons. The unique combinations of different ion channels, ionotropic receptors and synaptic structures create a unique functional diversity of neurons extremely adapted to their complex functions in the auditory processing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heares.2018.12.011DOI Listing

Publication Analysis

Top Keywords

neurons
10
ion channels
8
auditory processing
8
action potential
8
potential firing
8
input resistance
8
principal neurons
8
neurons mntb
8
dcn neurons
8
fast trains
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!