DSBs are harmful lesions produced through endogenous metabolism or by exogenous agents such as ionizing radiation, that can trigger genomic rearrangements. We have recently shown that exposure to 2 Gy of X-rays has opposite effects on the induction of Shh-dependent MB in NHEJ- and HR-deficient Ptch1 mice. In the current study we provide a comprehensive link on the role of HR/NHEJ at low doses (0.042 and 0.25 Gy) from the early molecular changes through DNA damage processing, up to the late consequences of their inactivation on tumorigenesis. Our data indicate a prominent role for HR in genome stability, by preventing spontaneous and radiation-induced oncogenic damage in neural precursors of the cerebellum, the cell of origin of MB. Instead, loss of DNA-PKcs function increased DSBs and apoptosis in neural precursors of the developing cerebellum, leading to killing of tumor initiating cells, and suppression of MB tumorigenesis in DNA-PKcs/Ptch1 mice. Pathway analysis demonstrates that DNA-PKcs genetic inactivation confers a remarkable radiation hypersensitivity, as even extremely low radiation doses may deregulate many DDR genes, also triggering p53 pathway activation and cell cycle arrest. Finally, by showing that DNA-PKcs inhibition by NU7441 radiosensitizes human MB cells, our in vitro findings suggest the inclusion of MB in the list of tumors beneficiating from the combination of radiotherapy and DNA-PKcs targeting, holding promise for clinical translation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dnarep.2018.12.003 | DOI Listing |
Cells
November 2024
Division of Biotechnologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy.
Medulloblastoma (MB) is a common primary brain cancer in children. The sonic hedgehog (SHH) pathway is indispensable for the normal development of the cerebellum, and MB is often caused by persistent SHH activation owing to mutations in pathway components. Patched1 () is the primary receptor for the SHH ligand and a negative regulator of the SHH signal transduction pathway.
View Article and Find Full Text PDFArab J Gastroenterol
November 2024
Department of General Surgery, Shanxi Bethune Hospital, Taiyuan 030032, Shanxi Province, China. Electronic address:
Background And Study Aims: This study aimed to ascertain the inhibitory effect of ginsenoside Rg3 (Rg3) combined with 5-fluorouracil (5-FU) on 5-FU-resistant cells HCT116/5-FU and its molecular mechanism.
Material And Methods: The HCT116 cell line resistant to 5-FU (HCT116/5-FU) was established by repeated exposure to gradually increasing 5-FU concentrations. The effects of different concentrations of Rg3 and 5-FU on colorectal cancer (CRC) cell proliferation were evaluated, and suitable concentrations were screened for subsequent experiments.
Int J Mol Sci
October 2024
Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
Vertebrates exhibit a left-right asymmetry from the central structures to the peripheral paired endocrine organs. However, the asymmetries in paired endocrine glands and the pathological consequences of such asymmetries remain largely unknown. The adrenal gland constitutes a pair of peripheral end organs in the neuroendocrine system, responsible for producing steroid hormones under stimuli.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China. Electronic address:
Reprod Toxicol
December 2024
Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA. Electronic address:
Piperonyl butoxide (PBO) is a pesticide synergist with widespread use and human exposure that was discovered to inhibit Sonic hedgehog (Shh) signaling, a pathway required for numerous developmental processes. Previous examinations of PBO's potential for developmental toxicity have generated seemingly conflicting results. We investigated the impact of acute PBO exposure targeting Shh pathway activity during palate and limb morphogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!