Background: Pekin duck products have become popular in Asia over recent decades and account for an increasing market share. However, the genetic mechanisms affecting carcass growth in Pekin ducks remain unknown. This study aimed to identify quantitative trait loci affecting body size and carcass yields in Pekin ducks.
Results: We measured 18 carcass traits in 639 Pekin ducks and performed genotyping using genotyping-by-sequencing (GBS). Loci-based association analysis detected 37 significant loci for the 17 traits. Thirty-seven identified candidate genes were involved in many biological processes. One single nucleotide polymorphism (SNP) (Chr1_140105435 A > T) located in the intron of the ATPase phospholipid transporting 11A gene (ATP11A) attained genome-wide significance associated with five weight traits. Eight SNPs were significantly associated with three body size traits, including the candidate gene plexin domain containing 2 (PLXDC2) associated with breast width and tensin 3 (TNS3) associated with fossil bone length. Only two SNPs were significantly associated with foot weight and four SNPs were significantly associated with heart weight. In the gene-based analysis, three genes (LOC101791418, TUBGCP3 (encoding tubulin gamma complex-associated protein 3), and ATP11A) were associated with four traits (42-day body weight, eviscerated weight, half-eviscerated weight, and leg muscle weight percentage). However, no loci were significantly associated with leg muscle weight in this study.
Conclusions: The novel results of this study improve our understanding of the genetic mechanisms regulating body growth in ducks and thus provide a genetic basis for breeding programs aimed at maximizing the economic potential of Pekin ducks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318962 | PMC |
http://dx.doi.org/10.1186/s12864-018-5379-1 | DOI Listing |
Animals (Basel)
January 2025
Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea.
The aim of this study was to identify the feather section, among the whole feather, rachis, and vane, with the highest reliability for corticosterone measurement in 10 Pekin ducks aged 42 days. In total, 60 samples (i.e.
View Article and Find Full Text PDFPoult Sci
January 2025
State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, PR China. Electronic address:
Good skin quality not only improved carcass quality but also increased consumer demand for fresh poultry meat. This study aimed to investigate the developmental changes in skin growth and quality of Pekin ducks during 1-6 weeks of age. The skin samples were collected from the breast, back, and thigh tissues of six male ducks at the end of each week.
View Article and Find Full Text PDFPoult Sci
January 2025
Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China. Electronic address:
Understanding the genomic variation in Pekin duck under artificial selection is important for improving the utilization of duck genetic resources. Here, the genomic changes in Pekin duck were analyzed by using the genome resequencing data from 96 individual samples, including 2 conservation populations and 4 breeding populations with different breeding backgrounds. The population structure, runs of homozygosity (ROH), effective population number (Ne), and other genetic parameters were analyzed.
View Article and Find Full Text PDFGigascience
January 2025
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Background: Plumage coloration is a distinctive trait in ducks, and the Liancheng duck, characterized by its white plumage and black beak and webbed feet, serves as an excellent subject for such studies. However, academic comprehension of the genetic mechanisms underlying duck plumage coloration remains limited. To this end, the Liancheng duck genome (GCA_039998735.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Emergency Department, Shenzhen New Frontier United Family Healthcare, Shenzhen 518038, China.
Background: Sebum deposition is a vital trait influencing meat quality and production efficiency in Pekin ducks. Providing insights into the genetic basis of fat deposition could help improve breeding strategies aimed at producing high-quality meat ducks. This study aimed to identify the genetic mechanisms and lipid metabolism pathways regulating subcutaneous and intramuscular fat deposition in two Pekin duck strains: Nankou No.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!