Background: Plants, fungi, and bacteria form complex, mutually-beneficial communities within the soil environment. In return for photosynthetically derived sugars in the form of exudates from plant roots, the microbial symbionts in these rhizosphere communities provide their host plants access to otherwise inaccessible nutrients in soils and help defend the plant against biotic and abiotic stresses. One role that bacteria may play in these communities is that of Mycorrhizal Helper Bacteria (MHB). MHB are bacteria that facilitate the interactions between plant roots and symbiotic mycorrhizal fungi and, while the effects of MHB on the formation of plant-fungal symbiosis and on plant health have been well documented, the specific molecular mechanisms by which MHB drive gene regulation in plant roots leading to these benefits remain largely uncharacterized.

Results: Here, we investigate the effects of the bacterium Pseudomonas fluorescens SBW25 (SBW25) on aspen root transcriptome using a tripartite laboratory community comprised of Populus tremuloides (aspen) seedlings and the ectomycorrhizal fungus Laccaria bicolor (Laccaria). We show that SBW25 has MHB activity and promotes mycorrhization of aspen roots by Laccaria. Using transcriptomic analysis of aspen roots under multiple community compositions, we identify clusters of co-regulated genes associated with mycorrhization, the presence of SBW25, and MHB-associated functions, and we generate a combinatorial logic network that links causal relationships in observed patterns of gene expression in aspen seedling roots in a single Boolean circuit diagram. The predicted regulatory circuit is used to infer regulatory mechanisms associated with MHB activity.

Conclusions: In our laboratory conditions, SBW25 increases the ability of Laccaria to form ectomycorrhizal interactions with aspen seedling roots through the suppression of aspen root antifungal defense responses. Analysis of transcriptomic data identifies that potential molecular mechanisms in aspen roots that respond to MHB activity are proteins with homology to pollen recognition sensors. Pollen recognition sensors integrate multiple environmental signals to down-regulate pollenization-associated gene clusters, making proteins with homology to this system an excellent fit for a predicted mechanism that integrates information from the rhizosphere to down-regulate antifungal defense response genes in the root. These results provide a deeper understanding of aspen gene regulation in response to MHB and suggest additional, hypothesis-driven biological experiments to validate putative molecular mechanisms of MHB activity in the aspen-Laccaria ectomycorrhizal symbiosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318872PMC
http://dx.doi.org/10.1186/s12870-018-1610-0DOI Listing

Publication Analysis

Top Keywords

antifungal defense
12
plant roots
12
molecular mechanisms
12
mhb activity
12
aspen roots
12
aspen
10
roots
9
mhb
9
pseudomonas fluorescens
8
defense response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!