Background Trimethylamine-N-oxide ( TMAO ), a diet-derived, gut microbial-host cometabolite, has been associated with adverse cardiovascular outcomes in patient populations; however, evidence is lacking from prospective studies conducted in general populations and non-Western populations. Methods and Results We evaluated urinary levels of TMAO and its precursor metabolites (ie, choline, betaine, and carnitine) in relation to risk of coronary heart disease ( CHD ) among Chinese adults in a nested case-control study, including 275 participants with incident CHD and 275 individually matched controls. We found that urinary TMAO , but not its precursors, was associated with risk of CHD . The odds ratio for the highest versus lowest quartiles of TMAO was 1.91 (95% CI, 1.08-3.35; P=0.008) after adjusting for CHD risk factors including obesity, diet, lifestyle, and metabolic diseases and 1.75 (95% CI, 0.96-3.18; P=0.03) after further adjusting for potential confounders or mediators including central obesity, dyslipidemia, inflammation, and intake of seafood and deep-fried meat or fish, which were associated with TMAO level in this study. The odds ratio per standard deviation increase in log- TMAO was 1.30 (95% CI, 1.03-1.63) in the fully adjusted model. A history of diabetes mellitus modified the TMAO - CHD association. A high TMAO level (greater than or equal to versus lower than the median) was associated with odds ratios of 6.21 (95% CI, 1.64-23.6) and 1.56 (95% CI, 1.00-2.43), respectively, among diabetic and nondiabetic participants ( P=0.02). Diabetes mellitus status also modified the associations of choline, betaine, and carnitine with risk of CHD ; significant positive associations were found among diabetic participants, but null associations were noted among total and nondiabetic participants. Conclusions Our study suggests that TMAO may accelerate the development of CHD , highlighting the importance of diet-gut microbiota-host interplay in cardiometabolic health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405718PMC
http://dx.doi.org/10.1161/JAHA.118.010606DOI Listing

Publication Analysis

Top Keywords

tmao
9
urinary levels
8
coronary heart
8
heart disease
8
chinese adults
8
choline betaine
8
betaine carnitine
8
risk chd
8
odds ratio
8
tmao level
8

Similar Publications

Purification and Electron Transfer from Soluble c-Type Cytochrome TorC to TorA for Trimethylamine N-Oxide Reduction.

Int J Mol Sci

December 2024

Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany.

The enterobacterium present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. TorA is anchored to the membrane via TorC, a pentahemic -type cytochrome which receives the electrons from the menaquinol pool.

View Article and Find Full Text PDF

Background: Trimethylamine N-oxide (TMAO) is a metabolite produced by gut microbiota, and its potential impact on lipid metabolism in mammals has garnered widespread attention in the scientific community. Bovine fatty liver disease, a metabolic disorder that severely affects the health and productivity of dairy cows, poses a significant economic burden on the global dairy industry. However, the specific role and pathogenesis of TMAO in bovine fatty liver disease remain unclear, limiting our understanding and treatment of the condition.

View Article and Find Full Text PDF

First Report from Saudi Arabia of Trimethylaminuria Caused by a Premature Stop Codon Mutation in the Gene.

Appl Clin Genet

December 2024

Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.

Background: Trimethylaminuria (TMAU) is a rare recessive genetic disorder with limited global prevalence. To date, there have been no official reports of TMAU cases documented in Saudi Arabia.

Purpose: In this study, we developed a liquid chromatography-mass spectrometry (LC-MS) method for the analysis of trimethylamine (TMA) and Trimethylamine N-Oxide (TMAO) in urine and plasma samples for the first reported case of TMAU in Saudi Arabia.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system.

View Article and Find Full Text PDF

Background: Although gut-derived uremic toxins are increased in azotemic chronic kidney disease (CKD) in cats and implicated in disease progression, it remains unclear if augmented formation or retention of these toxins is associated with the development of renal azotemia.

Objectives: Assess the association between gut-derived toxins (ie, indoxyl-sulfate, p-cresyl-sulfate, and trimethylamine-N-oxide [TMAO]) and the onset of azotemic CKD in cats.

Animals: Forty-eight client-owned cats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!