Trypanosomal and leishmanial infections claim tens of thousands of lives each year. The metabolism of these unicellular eukaryotic parasites differs from the human host and their enzymes thus constitute promising drug targets. Tryparedoxin (Tpx) from Trypanosoma brucei is the essential oxidoreductase in the parasite's hydroperoxide-clearance cascade. In vitro and in vivo functional assays show that a small, selective inhibitor efficiently inhibits Tpx. With X-ray crystallography, SAXS, analytical SEC, SEC-MALS, MD simulations, ITC, and NMR spectroscopy, we show how covalent binding of this monofunctional inhibitor leads to Tpx dimerization. Intra- and intermolecular inhibitor-inhibitor, protein-protein, and inhibitor-protein interactions stabilize the dimer. The behavior of this efficient antitrypanosomal molecule thus constitutes an exquisite example of chemically induced dimerization with a small, monovalent ligand that can be exploited for future drug design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201810470 | DOI Listing |
Anal Chim Acta
February 2025
Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China. Electronic address:
Background: Integrating natural enzymes and nanomaterials exhibiting tailored enzyme-like activities is an effective strategy for the application of cascade reactions. It is essential to develop a highly efficient and robust glucose oxidase-catalase (GOx-CAT) cascade system featuring controllable enzyme activity, a reliable supply of oxygen, and improved stability for glucose depletion in cancer starvation therapy. However, the ambiguous relationship between structure and performance, and the difficulty in controlling enzyme-mimic activity, significantly hinder their broader application.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan.
G protein-coupled receptors (GPCRs) are essential cell surface proteins involved in transducing extracellular signals into intracellular responses, regulating various physiological processes. This study validated the use of the Tango assay, a sensitive method for detecting GPCR activation, in Schneider 2 (S2) cells, focusing on the human Dopamine Receptor D4 (DRD4). Plasmids encoding the LexA-tagged human DRD4 receptor and a luciferase reporter were co-transfected into S2 cells and stimulated with dopamine.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Life Sciences, Yan'an University, Yan'an 716000, China.
Ca and Mg are essential micronutrients for plant growth, and they play a crucial role in plant development and responses to adversity by influencing the activities of endogenous hormones and antioxidant enzymes. However, the specific mechanisms through which calcium (Ca) and magnesium (Mg) regulate the kernel sugar content through endogenous hormones and antioxidant enzymes remain unclear. In this study, we analyzed the impact of Ca and Mg on the physiology of maize leaves and kernel quality by determining the activities of antioxidant enzymes and endogenous hormones, and the kernel sugar content in maize leaves when supplemented with different levels of Ca and Mg.
View Article and Find Full Text PDFLife Sci Alliance
March 2025
https://ror.org/01kj2bm70 Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
Pathogenic variants in cytochrome oxidase assembly factor 5 (COA5), a proposed complex IV (CIV) assembly factor, have been shown to cause clinical mitochondrial disease with two siblings affected by neonatal hypertrophic cardiomyopathy manifesting a rare, homozygous missense variant (NM_001008215.3: c.157G>C, p.
View Article and Find Full Text PDFParasitol Res
January 2025
Department of Biology, Faculty of Science, Marmara University, Goztepe, 34722, Istanbul, Türkiye.
Babesia bigemina is an apicomplexan parasite responsible for causing "Texas fever" in bovines. Current treatments for bovine babesiosis are hindered by several limitations, including toxicity, insufficient efficacy in eliminating the parasite, and the potential for resistance development. A promising approach to overcome these challenges is the identification of compounds that specifically target essential metabolic pathways unique to the parasite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!