We conducted a broad-scale ecological effect assessment of agricultural chemicals where we combined biomonitoring databases of riverine invertebrate communities with predictions of environmental concentrations of chemicals, based on an exposure evaluation model for Japanese rivers. One of the difficulties of broad-scale assessment arises from the use of biomonitoring databases for which the monitoring sites are often spread across different geographic regions, with varying species compositions and heterogeneous environmental factors. This problem was circumvented using a trait-based approach, which extracts patterns of ecological properties of species response to changes in either chemical concentration or environmental factors. We identified groups of species that had particular trait categories that were negatively correlated with herbicide pollutants (the predicted concentration divided by the acute toxic concentration). Numerical abundances of species groups classified by trait categories had more sensitive responses to herbicide pollutants than total species abundance. However, a finding that trait diversity and species diversity indexes in the communities examined did not change with herbicide pollutants means that the two indexes showed resistance to chemical stresses. We inferred that the reason for the greater resistance in terms of trait and species diversity was that compositional changes of species caused by increasing herbicide pollutions were simply a shift from communities composed of susceptible species to those composed only of tolerant species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2018.12.089 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!