The current prevalence of diagnosable dementia in India is 1% of people over 60 years (~3.7 million people), but is estimated to increase significantly, as ~15% world's aged population (>65 years) would be resident here by 2020 (Shah et al., 2016). While several mutations that pose a familial risk have been identified, the ethnic background may influence disease susceptibility, clinical presentation and treatment response. In this study, we report a detailed characterization of two representative HiPSC lines from a well-characterized dementia cohort from India. Availability of these lines, and associated molecular and clinical information, would be useful in the detailed exploration of the genomic contribution(s) to AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2018.101370DOI Listing

Publication Analysis

Top Keywords

derivation ipsc
4
ipsc lines
4
lines patients
4
patients familial
4
familial alzheimer's
4
alzheimer's disease
4
disease india
4
india current
4
current prevalence
4
prevalence diagnosable
4

Similar Publications

Derivation and Characterization of Isogenic Mutant and Control Human Pluripotent Stem Cell Lines.

Cells

January 2025

Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.

Dominant optic atrophy (DOA) is the most commonly inherited optic neuropathy. The majority of DOA is caused by mutations in the gene, which encodes a dynamin-related GTPase located to the mitochondrion. OPA1 has been shown to regulate mitochondrial dynamics and promote fusion.

View Article and Find Full Text PDF

The adult human spinal cord harbors diverse populations of neural stem/progenitor cells (NSPCs) essential for neuroregeneration and central nervous system repair. While induced pluripotent stem cell (iPSC)-derived NSPCs offer significant therapeutic potential, understanding their molecular and functional alignment with bona fide spinal cord NSPCs is crucial for developing autologous cell therapies that enhance spinal cord regeneration and minimize immune rejection. In this study, we present the first direct transcriptomic and functional comparison of syngeneic adult human NSPC populations, including bona fide spinal cord NSPCs and iPSC-derived NSPCs regionalized to the spinal cord (iPSC-SC) and forebrain (iPSC-Br).

View Article and Find Full Text PDF

Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.

Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.

View Article and Find Full Text PDF

Copy number variations of the human gene, resulting from megabase-scale microdeletions or microduplications in the 3p26.3 region, are frequently implicated in neurodevelopmental disorders such as intellectual disability and developmental delay. However, duplication of the full-length human gene presents with variable penetrance, resulting in phenotypes that range from neurodevelopmental disorders to no visible pathologies, even within the same family.

View Article and Find Full Text PDF

Deregulated ion channels contribute to RHOBTB2-associated developmental and epileptic encephalopathy.

Hum Mol Genet

January 2025

Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland.

While de novo missense variants in the BTB domains of atypical RhoGTPase RHOBTB2 cause a severe developmental and epileptic encephalopathy, de novo missense variants in the GTPase domain or bi-allelic truncating variants are associated with more variable neurodevelopmental and seizure phenotypes. Apart from the observation of RHOBTB2 abundance resulting from BTB-domain variants and increased seizure susceptibility in Drosophila overexpressing RhoBTB, our knowledge on RHOBTB2-related pathomechanisms is limited. We now found enrichment for ion channels among the differentially expressed genes from RNA-Seq on fly heads overexpressing RhoBTB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!