Riverbank filtration (RBF) as a barrier of pathogenic microorganisms and organic micropollutants recently has been proven capable of removing sulfonamides. However, the study about the effect of redox conditions on biodegradation of common and persistent sulfonamides in RBF is limited and the response of microbial communities to sulfonamides stress during RBF is unknown. In this study, two column set-ups (with residence time 5 days and 11 days respectively), simulating different redox conditions of riverbank filtration systems, were operated for seven months to investigate 1) the long-term effect of redox conditions on ng∙L level sulfonamides (sulfapyridine, sulfadiazine, sulfamethoxazole, sulfamethazine, sulfaquinoxaline) removal, and 2) the microbial community evolution represented by the phylogenetic and metabolic function shift under non-lethal selective pressures of sulfonamides. The results showed that sulfonamides were more degradable under anoxic conditions than oxic and suboxic conditions. In the sulfonamides stressed community, the phylogenetic diversity increased slightly. Relative abundance of an intrinsic sulfonamides resistant bacteria Bacillus spp. increased, suggesting that sulfonamide resistance developed in specific bacteria under sulfonamides contamination pressure in RBF systems. At the same time, an activated transport function in the stressed microbial community was noticed. The predicted relative abundance of gene folP, which encodes dihydropteroate synthase, also increased significantly, indicating a detoxification mechanism and sulfonamides resistance potential under non-lethal selective pressures of sulfonamides in RBF systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2018.12.167 | DOI Listing |
Redox Rep
December 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.
Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.
Inorg Chem
January 2025
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.
The hydrothermal synthesis of novel materials typically relies on both knowledge of the redox activities of all cations present in the reaction solution and a small toolset of so-called mineralizers to tune the solution's overall chemical potential. Upon the use of a less conventional mineralizer species, SiO, we show the stabilization of spiroffite-type CoTeO under less forceful hydrothermal conditions than those in previous reports. When synthesized in the presence of both SiO and each respective alkali carbonate as a secondary mineralizer, silicon substitution in place of tellurium in the host structure becomes apparent, and the corresponding disorder introduced gives rise to enhanced low-temperature ferromagnetism.
View Article and Find Full Text PDFAnal Chem
January 2025
Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
Total free thiols are an important marker of the whole-body redox state, which has been shown to be associated with clinical outcome in health and disease. Recent investigations have suggested that increased insight may be gained by monitoring alterations of redox state in response to exercise and hypoxia and to monitor redox trajectories in disease settings. However, conducting such studies is challenging due to the requirement for repeated venous blood sampling and intensive lab work.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Centro de Ecología Integrativa (CEI), Universidad de Talca, Talca, Chile.
Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!