Carnitine palmitoyltransferase 1 (Cpt1a) is a rate-limiting enzyme that mediates the transport of fatty acids into the mitochondria for subsequent beta-oxidation. The objective of this study was to uncover how diet mediates the transcriptional regulation of Cpt1a. Pregnant Sprague Dawley rats were exposed to either a high-fat (HF) or low-fat control diet during gestation and lactation. At weaning, male offspring received either a HF or control diet, creating 4 groups: lifelong control diet (C/C; n = 12), perinatal HF diet (HF/C; n = 9), post-weaning HF diet (C/HF; n = 10), and lifelong HF diet (HF/HF; n = 10). Only HF/HF animals had higher hepatic Cpt1a mRNA expression than C/C. Epigenetic analysis revealed reduced DNA methylation (DNAMe) and increased histone 3 lysine 4 dimethylation (H3K4Me2) upstream and within the promoter of Cpt1a in the HF/HF group. This was accompanied by increased peroxisome proliferator activated receptor alpha (PPARα) and CCAAT/enhancer binding protein beta (C/EBPβ) binding directly downstream of the Cpt1a transcription start site within the first intron. Findings were confirmed in rat hepatoma H4IIEC3 cells treated with non-esterified fatty acid (NEFA). After 12 h of NEFA treatment, there was an enrichment of SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily D member 1 (BAF60a or SMARCD1) in the first intron of Cpt1a. We conclude that dietary fat elevates hepatic Cpt1a expression via a highly coordinated transcriptional mechanism involving increased H3K4Me2, reduced DNAMe, and recruitment of C/EBPβ, PPARα, PGC1α, and BAF60a to the gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagrm.2018.12.009 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.
View Article and Find Full Text PDFJMIR Diabetes
January 2025
Center for Evaluation and Survey Research, HealthPartners Institute, Bloomington, MN, United States.
Background: Food choices play a significant role in achieving glycemic goals and optimizing overall health for people with type 2 diabetes (T2D). Continuous glucose monitoring (CGM) can provide a comprehensive look at the impact of foods and other behaviors on glucose in real time and over the course of time. The impact of using a nutrition-focused approach (NFA) when initiating CGM in people with T2D is unknown.
View Article and Find Full Text PDFSci Immunol
January 2025
Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
Regulatory T cells (T) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT T under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2 VAT T subsets.
View Article and Find Full Text PDFCell Rep
January 2025
Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Hepatic stellate cells (HSCs) are key drivers of local fibrosis. Adiponectin, conventionally thought of as an adipokine, is also expressed in quiescent HSCs. However, the impact of its local expression on the progression of liver fibrosis remains unclear.
View Article and Find Full Text PDFJ Diet Suppl
January 2025
Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
Background: Several epidemiological studies and intervention trials have demonstrated that grapes and blueberries, which are rich in flavanols, can lower the risk of cardiovascular disease. However, the mechanisms of action of these compounds remain unclear due to their low bioavailability.
Objective: This study aimed to characterize the sensory properties, blood flow velocity, and oxidative stress of a polyphenol rich grape and blueberry extract (PEGB) containing approximately 16% flavanols (11% monomers and 4% dimers).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!