Bio-Inspired Robust Membranes Nanoengineered from Interpenetrating Polymer Networks of Polybenzimidazole/Polydopamine.

ACS Nano

School of Chemical Engineering and Analytical Science , The University of Manchester, The Mill, Sackville street , Manchester M13 9PL , United Kingdom.

Published: January 2019

Marine mussel inspired polydopamine (PDA) has received increased attention due to its good thermal and chemical stability as well as strong adhesion on most materials. In this work, high-performance nanofiltration membranes based on interpenetrating polymer networks (IPN) incorporating PDA and polybenzimidazole (PBI) were developed for organic solvent nanofiltration (OSN). Generally, in order to obtain solvent stability, polymers need to be covalently cross-linked under harsh conditions, which inevitably leads to losses in permeability and mechanical flexibility. Surprisingly, by in situ polymerization of dopamine within a PBI support, excellent solvent resistance and permeance of polar aprotic solvents were obtained without covalent cross-linking of the PBI backbone due to the formation of an IPN. The molecular weight cutoff and permeance of the membranes can be fine-tuned by changing the polymerization time. Robust membrane performance was achieved in conventional and emerging green polar aprotic solvents (PAS) in a wide temperature range covering -10 °C to +100 °C. It was successfully demonstrated that the in situ polymerization of PDA-creating an IPN-can provide a simple and green alternative to covalent cross-linking of membranes. To elucidate the nature of the solvent stability, a detailed analysis was performed that revealed that physical entanglement along with strong secondary interaction synergistically enable solvent resistance with as low as 1-3% PDA content.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b04123DOI Listing

Publication Analysis

Top Keywords

interpenetrating polymer
8
polymer networks
8
solvent stability
8
situ polymerization
8
solvent resistance
8
polar aprotic
8
aprotic solvents
8
covalent cross-linking
8
solvent
5
bio-inspired robust
4

Similar Publications

Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.

View Article and Find Full Text PDF

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF
Article Synopsis
  • Soft conductive gels are crucial for epidermal electronics but struggle with uneven skin surfaces, especially where there's hair or mechanical stress.
  • This study presents an in-situ biogel that can shift between liquid and solid states in just 3 minutes using a temperature change, featuring a strong design that enhances its performance.
  • The biogel boasts impressive properties like high tensile strength, skin compatibility, and adhesive strength, making it suitable for applications like exercise data tracking, muscle recovery monitoring, and cardiac signal observation.
View Article and Find Full Text PDF

Herein, we propose magnetic nanocomposites as a powerful new catalyst for organic pollutant reduction. Polypyrrole (PPy) was synthesized in situ within the semi-interpenetrating alginate (Alg)/gelatin (Ge) network in presence of α-FeO as encapsulating matrix and inorganic filler, respectively. The polymeric matrix can act as bifunctional agent such as a binder and stabilizer to improve nanocatalyst stability while preserving their catalytic/magnetic performances.

View Article and Find Full Text PDF

We report on 3D-printable polymer networks based on the combination of modified alginate-based polymer blends; two alginate polymers were prepared, namely, a thermoresponsive polymer grafted with P(NIPAM--NtBAM)-NH copolymer chains and a second polymer modified with diol/pH-sensitive 3-aminophenylboronic acid. The gelation properties were determined by the hydrophobic association of the thermosensitive chains and the formation of boronate esters. At a mixing ratio of 70/30 wt % of the thermo/diol-responsive polymers, the semi-interpenetrating network exhibited an optimum storage modulus ranging from ca.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!