The antibiotic ciprofloxacin is used extensively to treat a wide range of infections caused by the opportunistic pathogen Pseudomonas aeruginosa. Due to its extensive use, the proportion of ciprofloxacin-resistant P. aeruginosa isolates is rapidly increasing. Ciprofloxacin resistance can arise through the acquisition of mutations in genes encoding the target proteins of ciprofloxacin and regulators of efflux pumps, which leads to overexpression of these pumps. However, understanding of the basis of ciprofloxacin resistance is not yet complete. Recent advances using high-throughput screens and experimental evolution combined with whole-genome sequencing and protein analysis are enhancing our understanding of the genetic and biochemical mechanisms involved in ciprofloxacin resistance. Better insights into the mechanisms of ciprofloxacin resistance may facilitate the development of new or improved therapeutic regimes effective against P. aeruginosa. In this review we discuss the current understanding of the mechanisms of ciprofloxacin resistance and summarize the genetic basis of ciprofloxacin resistance in P. aeruginosa, in the context of current and future use of this antibiotic.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.000873DOI Listing

Publication Analysis

Top Keywords

ciprofloxacin resistance
28
mechanisms ciprofloxacin
12
pseudomonas aeruginosa
8
ciprofloxacin
8
basis ciprofloxacin
8
resistance
7
aeruginosa
5
mechanisms
4
resistance pseudomonas
4
aeruginosa approaches
4

Similar Publications

This research delves into the evolving dynamics of antibiogram trends, the diversity of antibiotic resistance genes and antibiotic efficacy against Vibrio cholerae strains that triggered the cholera outbreak 2022 in Odisha, India. The study will provide valuable insights managing antimicrobial resistance during cholera outbreaks. Eighty V.

View Article and Find Full Text PDF

Commensal Neisseria are members of a healthy human oropharyngeal microbiome; however, they also serve as a reservoir of antimicrobial resistance for their pathogenic relatives. Despite their known importance as sources of novel genetic variation for pathogens, we still do not understand the full suite of resistance mutations commensal species can harbor. Here, we use in vitro selection to assess the mutations that emerge in response to ciprofloxacin selection in commensal Neisseria by passaging 4 replicates of 4 different species in the presence of a selective antibiotic gradient for 20 days; then categorized derived mutations with whole genome sequencing.

View Article and Find Full Text PDF

Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg·L) than traditional catalysts.

View Article and Find Full Text PDF

Background: Shorter courses of antibiotic therapy are increasingly recommended to reduce antibiotic exposure. However quantifying the real-world impact of duration of therapy is hindered by bias common in observational studies. We aimed to evaluate the harms and benefits of longer versus shorter duration of therapy in older adults.

View Article and Find Full Text PDF

Methicillin-resistant Staphylococcus aureus (MRSA) continues to pose significant challenges in healthcare settings due to its multi-drug resistance (MDR) and virulence. This retrospective study examines the molecular and resistance profiles of MRSA isolates from a tertiary care hospital in Saudi Arabia, providing valuable insights into regional epidemiology. A total of 190 MRSA strains were analysed to assess antimicrobial susceptibility, genetic diversity, and virulence factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!