Tumor vascularization is a hallmark of cancer central to disease progression and metastasis. Current anti-angiogenic therapies have limited success prompting the need to better understand the cellular origin of tumor vessels. Using fate-mapping analysis of endothelial cell populations in melanoma, we report the very early infiltration of endovascular progenitors (EVP) in growing tumors. These cells harbored self-renewal and reactivated the expression of SOX18 transcription factor, initiating a vasculogenic process as single cells, progressing towards a transit amplifying stage and ultimately differentiating into more mature endothelial phenotypes that comprised arterial, venous and lymphatic subtypes within the core of the tumor. Molecular profiling by RNA sequencing of purified endothelial fractions characterized EVPs as quiescent progenitors remodeling the extracellular matrix with significant paracrine activity promoting growth. Functionally, EVPs did not rely on VEGF-A signaling whereas endothelial-specific loss of Rbpj depleted the population and strongly inhibited metastasis. The understanding of endothelial heterogeneity opens new avenues for more effective anti-vascular therapies in cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318267PMC
http://dx.doi.org/10.1038/s41467-018-07961-wDOI Listing

Publication Analysis

Top Keywords

endovascular progenitors
8
progenitors infiltrate
4
infiltrate melanomas
4
melanomas differentiate
4
differentiate variety
4
variety vascular
4
vascular beds
4
beds promoting
4
tumor
4
promoting tumor
4

Similar Publications

Background And Purpose: Endothelial dysfunction is considered an emerging therapeutic target to prevent complications during acute stroke and to prevent recurrent stroke. This review aims to provide an overview of the current knowledge on endothelial dysfunction, outline the diagnostic methods used to measure it and highlight the drugs currently being investigated for the treatment of endothelial dysfunction in acute ischemic stroke.

Methods:  The PubMed® and ClinicalTrials.

View Article and Find Full Text PDF
Article Synopsis
  • * A decrease in EPC count and function disrupts the natural repair process in blood vessels, raising the risk for developing aneurysms, which suggests that targeting EPC abnormalities could help prevent aneurysm progression.
  • * Ongoing research is focusing on innovative treatments, such as drug therapies and tissue engineering, with early studies showing promise, yet more work is needed before these approaches can be used in clinical settings to benefit patients.
View Article and Find Full Text PDF

Skeletal muscle health and function is a critical determinant of clinical outcomes in patients with peripheral arterial disease (PAD). Herein, we identify fatty infiltration, the ectopic deposition of adipocytes in skeletal muscle, as a histological hallmark of end-stage PAD, also known as chronic limb threatening ischemia (CLTI). Leveraging single cell transcriptome mapping in mouse models of PAD, we identify a pro-adipogenic mesenchymal stromal cell population marked by expression of Vcam1 (termed Vcam1+ FAPs) that expands in the ischemic limb.

View Article and Find Full Text PDF

This comprehensive review explores the multifaceted role of endothelial progenitor cells (EPCs) in vascular diseases, focusing on their involvement in the pathogenesis and their contributions to enhancing the efficacy of endovascular treatments for intracranial aneurysms (IAs). Initially discovered as CD34 bone marrow-derived cells implicated in angiogenesis, EPCs have been linked to vascular repair, vasculogenesis, and angiogenic microenvironments. The origin and differentiation of EPCs have been subject to debate, challenging the conventional notion of bone marrow origin.

View Article and Find Full Text PDF

Background: By acting as an environmental sensor, the ligand-induced transcription factor aryl hydrocarbon receptor (AhR) regulates acute innate and adaptive immune responses against pathogens. Here, we analyzed the function of AhR in a model for chronic systemic infection with attenuated Salmonella Typhimurium (STM).

Methods: WT and AhR-deficient mice were infected with the attenuated STM strain TAS2010 and analyzed for bacterial burden, host defense functions and inflammatory stress erythropoiesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!