Pseudocapacitors with nondiffusion-limited charge storage mechanisms allow for fast kinetics that exceed conventional battery materials. It has been demonstrated that nanostructuring conventional battery materials can induce pseudocapacitive behavior. In our previous study, we found that assemblies of metallic 1T MoS nanocrystals show faster charge storage compared to the bulk material. Quantitative electrochemistry demonstrated that the current response is capacitive. In this work, we perform a series of operando X-ray diffraction studies upon electrochemical cycling to show that the high capacitive response of metallic 1T MoS nanocrystals is due to suppression of the standard first-order phase transition. In bulk MoS, a phase transition between 1T and triclinic phases (Li MoS) is observed during lithiation and delithiation in both the galvanostatic traces (as distinctive plateaus) and the X-ray diffraction patterns with the appearance of the additional peaks. MoS nanocrystal assemblies, on the other hand, show none of these features. We hypothesize that the reduced MoS crystallite size suppresses the first-order phase transition and gives rise to solid solution-like behavior, potentially due to the unfavorable formation of nucleation sites in confined spaces. Overall, we find that nanostructuring MoS suppresses the 1T-triclinic phase transition and shortens Li-ion diffusion path lengths, allowing MoS nanocrystal assemblies to behave as nearly ideal pseudocapacitors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b06381DOI Listing

Publication Analysis

Top Keywords

phase transition
16
x-ray diffraction
12
mos
9
operando x-ray
8
charge storage
8
conventional battery
8
battery materials
8
metallic mos
8
mos nanocrystals
8
first-order phase
8

Similar Publications

Dual opposing quadrature-PT symmetry.

iScience

January 2025

Department of Electrical and Computering Engineering, Binghamton University, Binghamton, NY 13902, USA.

Our recent research on type-I quadrature parity-time (PT) symmetry, utilizing an open twin-beam system, not only enables observing genuine quantum photonic PT symmetry amid phase-sensitive amplification (PSA) and loss in the presence of Langevin noise but also reveals an additional classical-to-quantum (C2Q) transition in noise fluctuations. In contrast to the previous setup, our exploration of an alternative system assuming no loss involves a type-II PSA-only scheme. This scheme facilitates dual opposing quadrature-PT symmetry, offering a comprehensive and complementary comprehension of C2Q transitions and PT-enhanced quantum sensing with optimal performance in the symmetry unbroken region.

View Article and Find Full Text PDF

Unlabelled: High expression of Fascin-1 involves high metastasis, high recurrence, and poor prognosis of cancers. However, the related regulatory mechanism in hepatocellular carcinoma (HCC) remains elusive. In this study, Fascin-1 was highly expressed in HCC tissues and cell lines.

View Article and Find Full Text PDF

Background And Purpose: This study assessed the treatment time of online adaptive (i.e. Adapt-to-Shape, ATS) and virtual couch shift (i.

View Article and Find Full Text PDF

Technological Advancements in Augmented, Mixed, and Virtual Reality Technologies for Surgery: A Systematic Review.

Cureus

December 2024

Private Practice, General Vascular Surgery Medical Group, Inc., San Leandro, USA.

Recent advancements in artificial intelligence (AI) have shown significant potential in the medical field, although many applications are still in the research phase. This paper provides a comprehensive review of advancements in augmented reality (AR), mixed reality (MR), and virtual reality (VR) for surgical applications from 2019 to 2024 to accelerate the transition of AI from the research to the clinical phase. This paper also provides an overview of proposed databases for further use in extended reality (XR), which includes AR, MR, and VR, as well as a summary of typical research applications involving XR in surgical practices.

View Article and Find Full Text PDF

A simple and efficient validated assay for quantifying 21-deoxycortisol (21-DOC), 17-hydroxyprogesterone (17-OHP), cortisol, and cortisone in human plasma has been developed using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Analysis of plasma samples were performed on Atlantis dC18 (3 m) column using a mobile phase of 20.0 mM ammonium acetate and acetonitrile (50:50, : ) that was delivered at isocratic flow rate 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!