A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrated Interaction Network of MicroRNA Target Genes in Keloid Scarring. | LitMetric

Keloids are a common dermal pathological disorder characterized by the excessive deposition of extracellular matrix components; however, the exact pathogenesis of the disease is still not clear. Studies increasingly suggest that microRNAs (miRNAs) can play a key role in the process of keloid scarring. In this study, the valuable miRNAs and target genes were screened and the interaction network was constructed. We also predicted target genes of reported miRNAs using TargetScan and miRTarBase software. Cytoscape 3.0.1 further showed the interaction network of miRNA and target genes. Among the various miRNAs involved in keloid pathogenesis, miRNA-21, miRNA-141-3p, miRNA-181a, and miRNA-205 were thought to up-regulate the proliferation and decrease apoptosis of keloid-derived fibroblasts through the PI3K/Akt/mammalian target of rapamycin (mTOR) signaling pathway. miRNA-637 and miRNA-1224 inhibited keloid fibroblasts proliferation and promoted apoptosis via the transforming growth factor (TGF)-β1/Smad3 signaling pathway. miRNA-21 was also involved in mitochondrial-mediated apoptosis and miRNA-31 targeted vascular endothelial growth factor (VEGF) signaling pathway. miRNA-199a may be one key factor in the cell cycle checkpoint signal pathway of keloid-derived fibroblasts. It was also found that miRNA-29a and miRNA-196a mediated collagen metabolism. These pivotal miRNAs and regulatory processes further improve the data on the epigenetic mechanisms of keloids and provide hope for the use of small molecules in the treatment of keloids.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40291-018-0378-0DOI Listing

Publication Analysis

Top Keywords

target genes
16
interaction network
12
signaling pathway
12
keloid scarring
8
keloid-derived fibroblasts
8
growth factor
8
target
5
mirnas
5
integrated interaction
4
network microrna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!