Evaluation of a Particulate Breast Cancer Vaccine Delivered via Skin.

AAPS J

Vaccine Nanotechnology Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, Georgia, 30341, USA.

Published: January 2019

Breast cancer impacts female population globally and is the second most common cancer for females. With various limitations and adverse effects of current therapies, several immunotherapies are being explored. Development of an effective breast cancer vaccine can be a groundbreaking immunotherapeutic approach. Such approaches are being evaluated by several clinical trials currently. On similar lines, our research study aims to evaluate a particulate breast cancer vaccine delivered via skin. This particulate breast cancer vaccine was prepared by spray drying technique and utilized murine breast cancer whole cell lysate as a source of tumor-associated antigens. The average size of the particulate vaccine was 1.5 μm, which resembled the pathogenic species, thereby assisting in phagocytosis and antigen presentation leading to further activation of the immune response. The particulate vaccine was delivered via skin using commercially available metal microneedles. Methylene blue staining and confocal microscopy were used to visualize the microchannels. The results showed that microneedles created aqueous conduits of 50 ± 10 μm to deliver the microparticulate vaccine to the skin layers. Further, an in vivo comparison of immune response depicted significantly higher concentration of serum IgG, IgG2a, and B and T cell (CD4+ and CD8+) populations in the vaccinated animals than the control animals (p < 0.001). Upon challenge with live murine breast cancer cells, the vaccinated animals showed five times more tumor suppression than the control animals confirming the immune response activation and protection (p < 0.001). This research paves a way for individualized immunotherapy following surgical tumor removal to prolong relapse episodes.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12248-018-0285-7DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
cancer vaccine
16
particulate breast
12
vaccine delivered
12
delivered skin
12
particulate vaccine
8
immune response
8
cancer
7
vaccine
7
breast
6

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Background: Breast cancer screening (BCS) inequities are evident at national and local levels, and many health systems want to address these inequities, but may lack data about contributing factors. The objective of this study was to inform health system interventions through an exploratory analysis of potential multilevel contributors to BCS inequities using health system data.

Methods: The authors conducted a cross-sectional analysis within a large academic health system including 19,774 individuals who identified as Black (n = 1445) or White (n = 18,329) race and were eligible for BCS.

View Article and Find Full Text PDF

Background: To date, 11 DNA polymerase epsilon (POLE) pathogenic variants have been declared "hotspot" mutations. Patients with endometrial cancer (EC) characterized by POLE hotspot mutations (POLEmut) have exceptional survival outcomes. Whereas international guidelines encourage deescalation of adjuvant treatment in early-stage POLEmut EC, data regarding safety in POLEmut patients with unfavorable characteristics are still under investigation.

View Article and Find Full Text PDF

Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!