Temperature variability drives within-species variation in germination strategy and establishment characteristics of an alpine herb.

Oecologia

Division of Ecology and Evolution, Research School of Biology, Building Number 46, The Australian National University, Canberra, ACT, Australia.

Published: February 2019

Plant establishment and subsequent persistence are strongly influenced by germination strategy, especially in temporally and spatially heterogeneous environments. Germination strategy determines the plant's ability to synchronise germination timing and seedling emergence to a favourable growing season and thus variation in germination strategy within species may be key to persistence under more extreme and variable future climates. However, the determinants of variation in germination strategy are not well resolved. To understand the variation of germination strategy and the climate drivers, we assessed seed traits, germination patterns, and seedling establishment traits of Oreomyrrhis eriopoda from 29 populations across its range. Germination patterns were then analysed against climate data to determine the strongest climate correlates influencing the germination strategy. Oreomyrrhis eriopoda exhibits a striking range of germination strategies among populations: varying from immediate to staggered, postponed, and postponed-deep. Seeds from regions with lower temperature variability were more likely to exhibit an immediate germination strategy; however, those patterns depended on the timescale of climatic assessment. In addition, we show that these strategy differences extend to seedling establishment traits: autumn seedlings (from populations with an immediate or staggered germination strategy) exhibited a higher leaf production rate than spring seedlings (of staggered or postponed strategy). Our results demonstrate not only substantial within-species variation in germination strategy across the species distribution range, but also that this variation correlates with environmental drivers. Given that these differences also extend to establishment traits, they may reflect a critical mechanism for persistence in changing climate.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-018-04328-2DOI Listing

Publication Analysis

Top Keywords

germination strategy
40
variation germination
20
germination
14
strategy
12
establishment traits
12
temperature variability
8
within-species variation
8
strategy species
8
germination patterns
8
seedling establishment
8

Similar Publications

Microbial assisted alleviation of nickel toxicity in plants: A review.

Ecotoxicol Environ Saf

January 2025

Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden. Electronic address:

Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.

View Article and Find Full Text PDF

Salt stress is one of the principal abiotic stresses limiting agricultural production and seriously inhibiting seed germination rates. This study selected the salt-tolerant rice variety HD961 and the salt-sensitive rice variety 9311 as experimental materials to investigate the physiological and metabolic effects of exogenous Spd seed priming on rice seeds and seedlings under NaCl stress. The experiment involved treating rice seeds with 0.

View Article and Find Full Text PDF

Successful pollination and fertilization are crucial for grain setting in cereals. Wheat is an allohexaploid autogamous species. Due to its evolutionary history, the genetic diversity of current bread wheat () cultivars is limited.

View Article and Find Full Text PDF

: Sweetpotato black rot, caused by , is a severe fungal disease in sweetpotato production. Biological control strategies represent a promising, environmentally sustainable approach to managing this disease. This study investigates the biocontrol potential of SFB-1 against .

View Article and Find Full Text PDF

has been identified as a Class II endangered species in Korea. Therefore, there is an urgent need to develop habitat conservation and improvement strategies for the protection of . In this study, we aimed to evaluate the environmental characteristics of habitats and identify key environmental factors influencing the population size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!